题目内容

递减的等差数列{an}的前n项和Sn满足S5=S10,则欲使Sn取最大值,n的值为(  )
A、10B、7C、9D、7或8
考点:等差数列的性质
专题:计算题,等差数列与等比数列
分析:由S5=S10可得S10-S5=a6+a7+a8+a9+a10=0,根据等差数列的性质可得a8=0,结合等差数列为递减数列,可得d小于0,从而得到a7大于0,a9小于0,从而得到正确的选项.
解答: 解:∵S5=S10
∴S10-S5=a6+a7+a8+a9+a10=0,
根据等差数列的性质可得,a8=0
∵等差数列{an}递减,
∴d<0,即a7>0,a9<0,
根据数列的和的性质可知S7=S8为Sn最大.
故选D.
点评:本题主要考查了等差数列的性质,考查了等差数列的和取得最值的条件①a1>0,d<0时数列的和有最大值;②a1<0,d>0数列的和有最小值,熟练掌握等差数列的性质是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网