题目内容
如图,椭圆C:
=1(a>b>0)的离心率为
,其左焦点到点P(2,1)的距离为
.不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.

(1)求椭圆C的方程;
(2)求△ABP面积取最大值时直线l的方程.
(1)求椭圆C的方程;
(2)求△ABP面积取最大值时直线l的方程.
(1)
=1(2)3x+2y+2
-2=0.
(1)设椭圆左焦点为F(-c,0),则由题意得
得
所以椭圆方程为
=1.
(2)设A(x1,y1),B(x2,y2),线段AB的中点为M.当直线AB与x轴垂直时,直线AB的方程为x=0,与不过原点的条件不符,舍去.故可设直线AB的方程为y=kx+m(m≠0),由
消去y,整理得(3+4k2)x2+8kmx+4m2-12=0,①
则Δ=64k2m2-4(3+4k2)(4m2-12)>0,
,
所以线段AB的中点为M
.
因为M在直线OP:y=
x上,所以
=
,得m=0(舍去)或k=-
.
此时方程①为3x2-3mx+m2-3=0,则Δ=3(12-m2)>0,
,所以AB=
·|x1-x2|=
·
,设点P到直线AB的距离为d,则d=
.设△ABP的面积为S,则S=
AB·d=
.其中m∈(-2
,0)∪(0,2
).令u(m)=(12-m2)(m-4)2,m∈[-2
,2
],u′(m)=-4(m-4)(m2-2m-6)=-4(m-4)·(m-1-
)(m-1+
).所以当且仅当m=1-
时,u(m)取到最大值.故当且仅当m=1-
时,S取到最大值.综上,所求直线l的方程为3x+2y+2
-2=0
所以椭圆方程为
(2)设A(x1,y1),B(x2,y2),线段AB的中点为M.当直线AB与x轴垂直时,直线AB的方程为x=0,与不过原点的条件不符,舍去.故可设直线AB的方程为y=kx+m(m≠0),由
则Δ=64k2m2-4(3+4k2)(4m2-12)>0,
所以线段AB的中点为M
因为M在直线OP:y=
此时方程①为3x2-3mx+m2-3=0,则Δ=3(12-m2)>0,
练习册系列答案
相关题目