题目内容

14.设函数y=f(x)是定义在R+上的减函数,并且任意的正实数x,y满足f(xy)=f(x)+f(y),f(2$\sqrt{2}$)=1.
(1)求f(1)的值;
(2)求f(8)的值;
(3)如果f(4)+f(x-2)<2,求x的取值范围.

分析 (1)利用已知条件通过赋值法求解即可.
(2)结合f(2$\sqrt{2}$)=1,通过赋值法求解即可.
(3)利用函数的单调性,推出结果即可.

解答 解:(1)任意的正实数x,y满足f(xy)=f(x)+f(y),
令x=y=1,则f(1)=f(1)+f(1),解得f(1)=0;
(2)f(8)=f($2\sqrt{2}•2\sqrt{2}$)=f(2$\sqrt{2}$)+f(2$\sqrt{2}$)=2;
(3)如果f(4)+f(x-2)<2,即:f(4(x-2))=f(4)+f(x-2)<f(2$\sqrt{2}$)+f(2$\sqrt{2}$)=f(8).
可得:4(x-2)>8,解得x>4
x的取值范围:(4,+∞).

点评 本题考查抽象函数的应用,函数的单调性,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网