题目内容

6.若数列{an}的通项公式${a_n}=\frac{1}{{{{(n+1)}^2}}}(n∈{N^*})$,记f(n)=(1-a1)(1-a2)…(1-an
(1)计算f(1),f(2),f(3)的值;
(2)由(1)猜想f(n),并证明.

分析 (1)根据公式计算;
(2)猜想结论,利用数学归纳法证明.

解答 解:(1)a1=$\frac{1}{(1+1)^{2}}$=$\frac{1}{4}$,a2=$\frac{1}{(2+1)^{2}}$=$\frac{1}{9}$,a3=$\frac{1}{(3+1)^{2}}$=$\frac{1}{16}$.
∴f(1)=1-a1=$\frac{3}{4}$,
f(2)=(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)=$\frac{2}{3}$,
f(3)=(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)=$\frac{5}{8}$.
(2)猜想:$f(n)=\frac{n+2}{2n+2}$,
证明如下:
当n=1时,结论显然成立,
假设n=k时,结论成立,即f(k)=(1-a1)(1-a2)…(1-ak)=$\frac{k+2}{2k+2}$,
则当n=k+1时,f(k+1)=(1-a1)(1-a2)…(1-ak)(1-ak+1)=f(k)(1-ak+1
=$\frac{k+2}{2k+2}$•(1-$\frac{1}{(k+2)^{2}}$)=$\frac{k+2}{2k+2}$•(1+$\frac{1}{k+2}$)(1-$\frac{1}{k+2}$)=$\frac{k+2}{2k+2}$•$\frac{k+3}{k+2}$•$\frac{k+1}{k+2}$=$\frac{k+3}{2(k+2)}$=$\frac{k+1+2}{2(k+1)+2}$.
∴当n=k+1时,结论成立,
综上,对任意正整数n∈N,都有$f(n)=\frac{n+2}{2n+2}$.

点评 本题考查了数学归纳法猜想并证明,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网