题目内容

在△OAB的边OA,OB上分别取点M,N,使|
OM
|:|
OA
|=1:3,|
ON
|:|
OB
|=1:4,设线段AN与BM交于点P,记
OA
=
a
OB
=
b
,用
a
b
表示向量
OP
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:由于A,P,N三点共线,由向量共线定理可得:存在实数λ使得
OP
OA
+(1-λ)
ON
=λ
OA
+
1-λ
4
OB
,同理可得:存在实数λ使得
OP
OM
+(1-μ)
OB
=
1
3
μ
OA
+(1-μ)
OB
.再利用共面向量基本定理可得:
λ=
1
3
μ
1-λ
4
=1-μ
,解得即可.
解答: 解:∵A,P,N三点共线,∴存在实数λ使得
OP
OA
+(1-λ)
ON
=λ
OA
+
1-λ
4
OB

∵B,P,M三点共线,∴存在实数λ使得
OP
OM
+(1-μ)
OB
=
1
3
μ
OA
+(1-μ)
OB

由共面向量基本定理可得:
λ=
1
3
μ
1-λ
4
=1-μ
,解得
λ=
3
11
μ=
9
11

OP
=
1
3
×
9
11
OA
+(1-
9
11
)
OB
=
3
11
a
+
2
11
b
点评:本题考查了向量共线定理、共面向量基本定理,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网