题目内容

A,B是椭圆x2+5y2=1上的两个动点,且OA⊥OB(O为坐标原点),求|AB|的最大值和最小值.
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:利用参数表示A,B的坐标,求出|AB|2=(cosα+sinα)2+(
5
5
sinα-
5
5
cosα)2=
4
3
+
2
3
sin2α,即可求|AB|的最大值和最小值.
解答: 解:设椭圆上动点的参数表达式A(cosα,
5
5
sinα),B(cos(α+
π
2
),
5
5
sin(α+
π
2
)),也即A(cosα,
5
5
sinα),B(-sinα,
5
5
cosα),
于是|AB|2=(cosα+sinα)2+(
5
5
sinα-
5
5
cosα)2=
4
3
+
2
3
sin2α,
故最大值为
2
,最小值为
6
3
点评:本题考查椭圆方程,考查学生的计算能力,比较基础.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网