题目内容

15.如图,在半径为1的半圆内,放置一个边长为$\frac{1}{2}$的正方形ABCD,向半圆内任取一点,则该点落在正方形内的槪率为(  )
A.$\frac{1}{π}$B.$\frac{1}{2π}$C.$\frac{2}{π}$D.$\frac{π}{4}$

分析 根据几何概型的概率公式求出对应的区域面积即可.

解答 解:半圆的面积S=$\frac{π}{2}$,正方形的面积S1=$\frac{1}{2}×\frac{1}{2}=\frac{1}{4}$,
则对应的概率P=$\frac{{S}_{1}}{S}=\frac{\frac{1}{4}}{\frac{π}{2}}$=$\frac{1}{2π}$,
故选:B

点评 本题主要考查几何概型的概率的计算,求出对应区域的面积是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网