题目内容

2.已知命题p;$\frac{1}{2}$≤x≤1,命题q:(x-a)(x-a-1)≤0,若¬p是¬q的必要不充分条件,则实数a的取值范围是(  )
A.[0,$\frac{1}{2}$]B.[$\frac{1}{2}$,1]C.[$\frac{1}{3}$,$\frac{1}{2}$]D.$(\frac{1}{3},\frac{1}{2}]$

分析 命题q:(x-a)(x-a-1)≤0,解得a≤x≤a+1.由于¬p是¬q的必要不充分条件,可得q是p的必要不充分条件.即可得出.

解答 解:命题q:(x-a)(x-a-1)≤0,解得a≤x≤a+1.
∵¬p是¬q的必要不充分条件,
∴q是p的必要不充分条件.
∴$\left\{\begin{array}{l}{a≤\frac{1}{2}}\\{1≤a+1}\end{array}\right.$,且等号不能同时成立.
解得$0≤a≤\frac{1}{2}$.
则实数a的取值范围是$[0,\frac{1}{2}]$.
故选:A.

点评 本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网