题目内容
20.已知等差数列{an}满足a1+a2=10,a4-a3=2.(Ⅰ)求{an}的通项公式;
(Ⅱ)设等比数列{bn}满足b4=a3,b5=a7,问:b7与数列{an}的第几项相等?
分析 (I)利用等差数列的通项公式即可得出.
(II)利用等比数列的通项公式即可得出.
解答 解:(Ⅰ)设等差数列{an}的公差为d.
因为a4-a3=2,所以d=2.
又因为a1+a2=10,所以2a1+d=10,故a1=4.
所以an=4+2(n-1)=2n+2(n∈N*).…(6分)
(Ⅱ)设等比数列{bn}的公比为q.
因为b4=a3=8,b5=a7=16,所以q=2,b1=1.…(8分)
所以b7=1×26=64.…(10分)
由64=2n+2得n=31,
所以b7与数列{an}的第31项相等.…(12分)
点评 本题考查了等差数列与等比数列的通项公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
10.已知$cosα=\frac{3}{5}$,$α∈(\frac{3π}{2},2π)$,则$cos(α-\frac{π}{4})$=( )
| A. | $\frac{{7\sqrt{2}}}{10}$ | B. | $-\frac{{7\sqrt{2}}}{10}$ | C. | $\frac{{\sqrt{2}}}{10}$ | D. | $-\frac{{\sqrt{2}}}{10}$ |
15.在等差数列{an}中,已知a3+a8>0,且S9<0,则S1、S2、…S9中最小的是( )
| A. | S5 | B. | S6 | C. | S7 | D. | S8 |
9.若集合A={0,1},B={y|y=2x,x∈A},则(∁RA)∩B=( )
| A. | {0} | B. | {2} | C. | {2,4} | D. | {0,1,2} |
11.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得到下表数据
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(2)试根据(2)中求出的线性回归方程,预测记忆力为9的同学的判断力.
(相关公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$x,参考数据$\sum_{i=1}^{4}$xiyi=158,$\sum_{i=1}^{4}$x${\;}_{i}^{2}$=344)
| x | 6 | 8 | 10 | 12 |
| y | 2 | 3 | 5 | 6 |
(2)试根据(2)中求出的线性回归方程,预测记忆力为9的同学的判断力.
(相关公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$x,参考数据$\sum_{i=1}^{4}$xiyi=158,$\sum_{i=1}^{4}$x${\;}_{i}^{2}$=344)