题目内容
从如图1所示的圆柱中挖去一个以圆柱的上底面为底面,下底面的圆心为顶点的圆锥得到一个几何体,现用一个平面去截这个几何体,若这个平面垂直于圆柱的底面所在的平面,那么所截得的图形可能是图2中的 .(把所有可能的图形的序号都填上).

考点:旋转体(圆柱、圆锥、圆台)
专题:空间位置关系与距离
分析:根据圆锥曲线的定义和圆锥的几何特征,分截面过旋转轴时和截面不过旋转轴时两种情况,分析截面图形的形状,最后综合讨论结果,可得答案.
解答:
解:当截面过旋转轴时,
圆锥的轴截面为等腰三角形,此时(1)符合条件;
当截面不过旋转轴时,
圆锥的轴截面为双曲线的一支,此时(3)符合条件;
故截面图形可能是(1)(3),
故(1)(3)
圆锥的轴截面为等腰三角形,此时(1)符合条件;
当截面不过旋转轴时,
圆锥的轴截面为双曲线的一支,此时(3)符合条件;
故截面图形可能是(1)(3),
故(1)(3)
点评:本题考查的知识点是旋转体,圆锥曲线的定义,熟练掌握圆锥曲线的定义是解答的关键.
练习册系列答案
相关题目
若a,b,c,d是空间四条直线.如果“a⊥c,b⊥c,a⊥d,b⊥d”,则( )
| A、a,b,c,d中任意两条可能都不平行 |
| B、a∥b |
| C、c∥d |
| D、a∥b或c∥d |