题目内容

17.已知数列{an}中a1=1,an+1=$\frac{a_n}{{3{a_n}+1}}$,则a34=(  )
A.$\frac{34}{103}$B.100C.$\frac{1}{100}$D.$\frac{1}{104}$

分析 an+1=$\frac{a_n}{{3{a_n}+1}}$,两边取倒数可得:$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=3,再利用等差数列的通项公式即可得出.

解答 解:∵an+1=$\frac{a_n}{{3{a_n}+1}}$,两边取倒数可得:$\frac{1}{{a}_{n+1}}$-$\frac{1}{{a}_{n}}$=3,
∴数列$\{\frac{1}{{a}_{n}}\}$是等差数列,首项为1,公差为3.
∴$\frac{1}{{a}_{n}}$=1+3(n-1)=3n-2,
∴an=$\frac{1}{3n-2}$.
则a34=$\frac{1}{100}$.
故选:C.

点评 本题考查了递推关系的应用、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网