题目内容

20.设复数z的共轭复数为$\overline{z}$,且4z+2$\overline{z}$=3$\sqrt{3}$+i,ω=sinθ-icosθ,复数z-ω对应复平面内的向量为$\overrightarrow{OM}$,求复数z和|$\overrightarrow{OM}$|的取值范围.

分析 设出复数z的形式,由题意和复数相等可得方程组,解方程组可得z,再由模长公式和三角函数可得.

解答 解:设z=a+bi,a,b∈R,则$\overline{z}$=a-bi,
代入且4z+2$\overline{z}$=3$\sqrt{3}$+i可得4a+4bi+2a-2bi=3$\sqrt{3}$+i,
化简可得6a+2bi=3$\sqrt{3}$+i,
由复数相等可得6a=3$\sqrt{3}$,2b=1,
解得a=$\frac{\sqrt{3}}{2}$,b=$\frac{1}{2}$,∴z=$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$i,
∴|$\overrightarrow{OM}$|=|z-ω|=|($\frac{\sqrt{3}}{2}$-sinθ)+($\frac{1}{2}$+cosθ)i|
=$\sqrt{(\frac{\sqrt{3}}{2}-sinθ)^{2}+(\frac{1}{2}+cosθ)^{2}}$
=$\sqrt{2-\sqrt{3}sinθ+cosθ}$
=$\sqrt{2-2sin(θ-\frac{π}{6})}$,
∵-1≤sin($θ-\frac{π}{6}$)≤1,
∴0≤2-2sin($θ-\frac{π}{6}$)≤4,
∴0≤|$\overrightarrow{OM}$|≤2

点评 本题考查复数相等和模长,涉及三角函数公式和三角函数的值域,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网