题目内容
7.计算sin150°cos30°的值为$\frac{{\sqrt{3}}}{4}$.分析 由已知利用诱导公式,二倍角的正弦函数公式,特殊角的三角函数值即可化简求值.
解答 解:sin150°cos30°
=sin30°cos30°
=$\frac{1}{2}$sin60°
=$\frac{1}{2}×\frac{\sqrt{3}}{2}$
=$\frac{{\sqrt{3}}}{4}$.
故答案为:$\frac{{\sqrt{3}}}{4}$.
点评 本题主要考查了诱导公式,二倍角的正弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,属于基础题.
练习册系列答案
相关题目
1.等差数列{an}的公差d<0且a12=a132,则数列{an}的前n项和Sn有最大值,当Sn取得最大值时的项数n是( )
| A. | 6 | B. | 7 | C. | 5或6 | D. | 6或7 |
15.已知$sin(x-\frac{9π}{14})cos\frac{π}{7}+cos(x-\frac{9π}{14})sin\frac{π}{7}=\frac{1}{3}$,则cosx等于( )
| A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | $\frac{{2\sqrt{2}}}{3}$ | D. | $±\frac{{2\sqrt{2}}}{3}$ |
16.由不等式$\left\{\begin{array}{l}0≤x≤1\\ 0≤y≤1\end{array}\right.$确定的平面区域记为Ω1,不等式$\left\{\begin{array}{l}{(x-\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{1}{2}\;\;\\ x≥y\\ x+y≥1\\ \;\;\end{array}\right.$确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为( )
| A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{8}$ |
17.设集合A={x|4x2≤1},B={x|lnx<0},则A∩B=( )
| A. | $(-\frac{1}{2},\frac{1}{2})$ | B. | $(0,\frac{1}{2})$ | C. | $[\frac{1}{2},1)$ | D. | $(0,\frac{1}{2}]$ |