题目内容
若不等式|a-1|>
+
+…+
对一切n∈N+恒成立,则实数a的取值范围是 .
| 1 |
| 1×2×3 |
| 1 |
| 2×3×4 |
| 1 |
| n(n+1)(n+2) |
考点:函数恒成立问题,数列的求和
专题:计算题,等差数列与等比数列
分析:利用裂项法求和,进而可得不等式,即可求出实数a的取值范围.
解答:
解:
=
[
-
]=
(
-
)-
(
-
),
∴
+
+…+
=
(1-
+
-
+…+
-
)-
(
-
+…+
-
)
=
(1-
)-
(
-
)=
(
-
+
)≤
,
∵不等式|a-1|>
+
+…+
对一切n∈N+恒成立,
∴|a-1|>
,
∴a<
或a>
.
故答案为:a<
或a>
.
| 1 |
| n(n+1)(n+2) |
| 1 |
| 2 |
| 1 |
| n(n+1) |
| 1 |
| (n+1)(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴
| 1 |
| 1×2×3 |
| 1 |
| 2×3×4 |
| 1 |
| n(n+1)(n+2) |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 6 |
∵不等式|a-1|>
| 1 |
| 1×2×3 |
| 1 |
| 2×3×4 |
| 1 |
| n(n+1)(n+2) |
∴|a-1|>
| 1 |
| 6 |
∴a<
| 5 |
| 6 |
| 7 |
| 6 |
故答案为:a<
| 5 |
| 6 |
| 7 |
| 6 |
点评:本题考查函数恒成立问题,考查数列的求和,正确裂项是关键.
练习册系列答案
相关题目
集合A={1,2,3,4,5},B={2,4,7},则A∩B等于( )
| A、{1,2,3,4,5,7} |
| B、{1,2,3,4,5,2,4,7} |
| C、{2,4} |
| D、{2,3,4} |
若函数f(x)=ax3+x恰有3个单调区间,则实数a的取值范围( )
| A、(-1,0] |
| B、(0,1] |
| C、(-∞,1] |
| D、(-∞,0) |