题目内容

f(x)对任意x∈R都有f(x)+f(1-x)=
1
2

(Ⅰ)求f(
1
2
)
f(
1
n
)+f(
n-1
n
)(n∉N)
的值;
(Ⅱ)数列{an}满足:an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)
,数列{an}是等差数列吗?请给予证明;
(Ⅲ)令bn=
4
4an-1
Tn=
b
2
1
+
b
2
2
+
b
2
3
+…+
b
2
n
Sn=32-
16
n
.试比较Tn与Sn的大小.
分析:(Ⅰ)直接代入x=
1
2
求得f(
1
2
)
的值,代入x=
1
n
求得f(
1
n
)+f(
n-1
n
)(n∉N)
的值.
(Ⅱ)根据(Ⅰ)中f(
1
n
) +f(
n-1
n
)
=
1
2
,利用倒序相加法进行求解.
(Ⅲ)求得bn=
4
4an-1
=
4
n
,进而求得Tn,利用放缩法得到Tn≤Sn
解答:解:(Ⅰ)因为f(
1
2
) +f(1-
1
2
) =
1
2
,所以f(
1
2
) =
1
4

令x=
1
n
,得f(
1
n
) +f(1-
1
n
)  =
1
2
,即f(
1
n
) +f(
n-1
n
)
=
1
2

(Ⅱ)an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)

又an=f(1)+f(
n-1
n
)+…f(
1
n
)+f(0)
两式相加 2an=[f(0)+f(1)]+[f(
1
n
+
n-1
n
)]+[f(1)+f(0)]=
n+1
2

所以an=
n+1
4
,n∈N

an+1-an=
n+1+1
4
-
n+1
4
=
1
4
.故数列{an}是等差数列.
(Ⅲ)bn=
4
4an-1
=
4
n
Tn=b12+b22++bn2=16(1+
1
22
+
1
32
+…
1
n2
)
≤16[1+
1
1×2
+
1
2×3
+…
1
n(n-1)
]

=16[1+(1-
1
2
)+(
1
2
-
1
3
)+…(
1
n-1
-
1
n
)]

=16(2-
1
n
)=32-
16
n
=Sn
.所以Tn≤Sn
点评:本题是数列与函数的综合题,考查了倒序相加法,放缩法等高中的数学基本方法,应该熟练掌握
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网