题目内容

对于函数f(x)=
sinπx,   x∈[0,2]
1
2
f(x-2),x∈(2,+∞)
,有下列4个命题:
①任取x1、x2∈[0,+∞),都有|f(x1)-f(x2)|≤2恒成立;
②f(x)=2kf(x+2k)(k∈N*),对于一切x∈[0,+∞)恒成立;
③函数y=f(x)-ln(x-1)有3个零点;
④对任意x>0,不等式f(x)≤
k
x
恒成立,则实数k的取值范围是[
9
8
,+∞).
则其中所有真命题的序号是
 
考点:分段函数的应用
专题:综合题,数形结合,函数的性质及应用
分析:作出f(x)=
sinπx,   x∈[0,2]
1
2
f(x-2),x∈(2,+∞)
的图象,利用图象可得结论.
解答: 解:f(x)=
sinπx,   x∈[0,2]
1
2
f(x-2),x∈(2,+∞)
的图象如图所示:
①f(x)的最大值为1,最小值为-1,∴任取x1、x2∈[0,+∞),都有|f(x1)-f(x2)|≤2恒成立,正确;
②f(
1
2
)=2f(
1
2
+2)=4f(
1
2
+4)=8f(
1
2
+6)≠8f(
1
2
+8),故不正确;
③如图所示,函数y=f(x)-ln(x-1)有3个零点;
④把(
5
2
1
2
)代入,可得k>
9
8

故答案为:①③.
点评:本题考查分段函数的应用,考查数形结合的数学思想,正确作出函数的图象是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网