题目内容
1.设x,y满足不等式组$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$,若z=ax+by(a>0,b>0)的最大值为4,则$\frac{1}{a}+\frac{2}{3b}$的最小值为4..分析 由题意作出其平面区域,从而由线性规划可得a+$\frac{3}{2}$b=1;从而化简$\frac{1}{a}+\frac{2}{3b}$利用“1”的代换;从而利用基本不等式求解即可.
解答 解:由题意作出其平面区域,![]()
由$\left\{\begin{array}{l}{x-y+2=0}\\{3x-y-6=0}\end{array}\right.$解得,x=4,y=6;
又∵a>0,b>0;
故当x=4,y=6时目标函数z=ax+by取得最大值,
即4a+6b=4;
即a+$\frac{3}{2}$b=1;
故$\frac{1}{a}+\frac{2}{3b}$=($\frac{1}{a}+\frac{2}{3b}$)(a+$\frac{3}{2}$b)
=1+1+$\frac{3b}{2a}$+$\frac{2a}{3b}$≥2+2×$\sqrt{\frac{3b}{2a}•\frac{2a}{3b}}$=4;
(当且仅当a=$\frac{1}{2}$,b=$\frac{1}{3}$时,等号成立);
则$\frac{1}{a}+\frac{2}{3b}$的最小值为4.
故答案为:4.
点评 本题考查了简单线性规划,作图要细致认真,同时考查了基本不等式的应用,属于中档题.
练习册系列答案
相关题目
6.“石头、剪刀、布”,又称“猜丁壳”,是一种流传多年的猜拳游戏,起源于中国,然后传到日本、朝鲜等地,随着亚欧贸易的不断发展,它传到了欧洲,到了近代逐渐风靡世界.其游戏规则是:出拳之前双方齐喊口令,然后在话音刚落时同时出拳,握紧的拳头代表“石头”,食指和中指伸出代表“剪刀”,五指伸开代表“布”.“石头”胜“剪刀”、“剪刀”胜“布”、而“布”又胜过“石头”.若所出的拳相同,则为和局.小千和大年两位同学进行“五局三胜制”的“石头、剪刀、布”游戏比赛,则小千和大年比赛至第四局小千胜出的概率是( )
| A. | $\frac{1}{27}$ | B. | $\frac{2}{27}$ | C. | $\frac{2}{81}$ | D. | $\frac{8}{81}$ |
13.设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),(点P与点A,B不重合),则△PAB的面积最大值是( )
| A. | $2\sqrt{5}$ | B. | 5 | C. | $\frac{5}{2}$ | D. | $\sqrt{5}$ |