题目内容
已知数列{an},Sn是其前n项的和,且满足3an=2Sn+n(n∈N*)
(Ⅰ)求证:数列{an+
}为等比数列;
(Ⅱ)记Tn=S1+S2+…+Sn,求Tn的表达式.
(Ⅰ)求证:数列{an+
| 1 |
| 2 |
(Ⅱ)记Tn=S1+S2+…+Sn,求Tn的表达式.
考点:数列的求和,等比关系的确定
专题:等差数列与等比数列
分析:(Ⅰ)由3an=2Sn+n,类比可得3an-1=2Sn-1+n-1(n≥2),两式相减,整理即证得数列{an+
}是以
为首项,3为公比的等比数列;
(Ⅱ)由(Ⅰ)得an+
=
•3n⇒an=
(3n-1),Sn=
-
,分组求和,利用等比数列与等差数列的求和公式,即可求得Tn的表达式.
| 1 |
| 2 |
| 3 |
| 2 |
(Ⅱ)由(Ⅰ)得an+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3n+1-3 |
| 4 |
| n |
| 2 |
解答:
(Ⅰ)证明:∵3an=2Sn+n,
∴3an-1=2Sn-1+n-1(n≥2),
两式相减得:3(an-an-1)=2an+1(n≥2),
∴an=3an-1+1(n≥2),
∴an+
=3(an-1+
),又a1+
=
,
∴数列{an+
}是以
为首项,3为公比的等比数列;
(Ⅱ)解:由(Ⅰ)得an+
=
•3n-1=
•3n,
∴an=
•3n-
=
(3n-1),
∴Sn=
[(3+32+…+3n)-n]=
(
-n)=
-
,
∴Tn=S1+S2+…+Sn=
(32+33+…+3n+3n+1)-
-
(1+2+…+n)
=
•
-
-
=
-
.
∴3an-1=2Sn-1+n-1(n≥2),
两式相减得:3(an-an-1)=2an+1(n≥2),
∴an=3an-1+1(n≥2),
∴an+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
∴数列{an+
| 1 |
| 2 |
| 3 |
| 2 |
(Ⅱ)解:由(Ⅰ)得an+
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
∴an=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴Sn=
| 1 |
| 2 |
| 1 |
| 2 |
| 3(1-3n) |
| 1-3 |
| 3n+1-3 |
| 4 |
| n |
| 2 |
∴Tn=S1+S2+…+Sn=
| 1 |
| 4 |
| 3n |
| 4 |
| 1 |
| 2 |
=
| 1 |
| 4 |
| 32(1-3n) |
| 1-3 |
| 3n |
| 4 |
| (1+n)n |
| 4 |
=
| 3n+2-9 |
| 8 |
| n2+4n |
| 4 |
点评:本题考查数列的求和,着重考查等比关系的确定,突出考查分组求和,熟练应用等比数列与等差数列的求和公式是关键,属于难题.
练习册系列答案
相关题目
cos
的值等于( )
| 5π |
| 12 |
A、
| ||||||
B、
| ||||||
C、
| ||||||
D、
|
根据如图程序框图,输出k的值为( )

| A、3 | B、4 | C、5 | D、6 |