题目内容

已知数列{an},Sn是其前n项的和,且满足3an=2Sn+n(n∈N*
(Ⅰ)求证:数列{an+
1
2
}为等比数列;
(Ⅱ)记Tn=S1+S2+…+Sn,求Tn的表达式.
考点:数列的求和,等比关系的确定
专题:等差数列与等比数列
分析:(Ⅰ)由3an=2Sn+n,类比可得3an-1=2Sn-1+n-1(n≥2),两式相减,整理即证得数列{an+
1
2
}是以
3
2
为首项,3为公比的等比数列;
(Ⅱ)由(Ⅰ)得an+
1
2
=
1
2
•3n⇒an=
1
2
(3n-1),Sn=
3n+1-3
4
-
n
2
,分组求和,利用等比数列与等差数列的求和公式,即可求得Tn的表达式.
解答: (Ⅰ)证明:∵3an=2Sn+n,
∴3an-1=2Sn-1+n-1(n≥2),
两式相减得:3(an-an-1)=2an+1(n≥2),
∴an=3an-1+1(n≥2),
∴an+
1
2
=3(an-1+
1
2
),又a1+
1
2
=
3
2

∴数列{an+
1
2
}是以
3
2
为首项,3为公比的等比数列;
(Ⅱ)解:由(Ⅰ)得an+
1
2
=
3
2
•3n-1=
1
2
•3n
∴an=
1
2
•3n-
1
2
=
1
2
(3n-1),
∴Sn=
1
2
[(3+32+…+3n)-n]=
1
2
3(1-3n)
1-3
-n)=
3n+1-3
4
-
n
2

∴Tn=S1+S2+…+Sn=
1
4
(32+33+…+3n+3n+1)-
3n
4
-
1
2
(1+2+…+n)
=
1
4
32(1-3n)
1-3
-
3n
4
-
(1+n)n
4

=
3n+2-9
8
-
n2+4n
4
点评:本题考查数列的求和,着重考查等比关系的确定,突出考查分组求和,熟练应用等比数列与等差数列的求和公式是关键,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网