题目内容
10.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(5-x),x<4}\\{-f(x-2),x≥4}\end{array}\right.$,则f(2017)=-1.分析 当x≥4时,f(x)=f(x-4),从而得到f(2017)=-f(3),由此能求出f(2017).
解答 解:当x≥4时,由f(x)=-f(x-2),得f(x)=f(x-4),
故f(2017)=f(2017-503×4)=f(5)=-f(3),
又f(3)=log22=1,
∴f(2017)=-1.
故答案为:-1.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目
20.U={1,2,3,4,5,6,7,8},A={2,3,4,5},则∁UA=( )
| A. | {1,6,7,8} | B. | {1,5,7,8} | C. | {1,2,3,5,6,7} | D. | ∅ |
5.等差数列{an}的前n项和为Sn,S7<S9<S8,给出下列命题:
①数列{an}为递减数列;②|a8|>|a9|;③Sn最大值为S8;④满足Sn>0的n最大值为16.
其中正确的命题个数是( )
①数列{an}为递减数列;②|a8|>|a9|;③Sn最大值为S8;④满足Sn>0的n最大值为16.
其中正确的命题个数是( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
19.已知数列{an}满足an=$\frac{2n+4}{3}$,若从{an}中提取一个公比为q的等比数列{a${\;}_{{k}_{n}}$},其中k1=1且k1<k2<…<kn,kn∈N*,则满足条件的最小q的值为( )
| A. | $\frac{4}{3}$ | B. | $\frac{5}{4}$ | C. | $\frac{5}{3}$ | D. | 2 |