题目内容
证明:(1)2≤(1+
)n<3,其中n∈N*;
(2)证明:对任意非负整数n,33n-26n-1可被676整除.
| 1 |
| n |
(2)证明:对任意非负整数n,33n-26n-1可被676整除.
考点:整除的基本性质
专题:二项式定理
分析:(1)(1+
)n=1+
•
+
•(
)2+…+
•(
)n≥2,恒成立,进而利用放缩法和裂项相消法,可证得(1+
)n<3,综合可得结论;
(2)当n=0时,33n-26n-1=0,可被676整除.当n=1时,33n-26n-1=0,可被676整除.当n≥2时,33n-26n-1=27n-26n-1=(1+26)n-26n-1=
•262+…+
•26n,可被676整除.综合可得结论.
| 1 |
| n |
| C | 1 n |
| 1 |
| n |
| C | 2 n |
| 1 |
| n |
| C | n n |
| 1 |
| n |
| 1 |
| n |
(2)当n=0时,33n-26n-1=0,可被676整除.当n=1时,33n-26n-1=0,可被676整除.当n≥2时,33n-26n-1=27n-26n-1=(1+26)n-26n-1=
| C | 2 n |
| C | n n |
解答:
证明:(1)(1+
)n=1+
•
+
•(
)2+…+
•(
)n≥2,
当且仅当n=1时取等号,
当n=1时,(1+
)n=2<3显然成立,
当n≥2时,(1+
)n=
+
•
+
•(
)2+…+
•(
)n=2+
•(
)2+…+
•(
)n=2+
•(
)2+
•(
)3+…+
•(
)n<2+
+
+…+
<2+
+
+…+
=3-
<3,
综上所述:2≤(1+
)n<3,
(2)当n=0时,33n-26n-1=0,可被676整除.
当n=1时,33n-26n-1=0,可被676整除.
当n≥2时,33n-26n-1=27n-26n-1=(1+26)n-26n-1=
+
•26+
•262+…+
•26n-26n-1=
•262+…+
•26n,可被676整除.
综上所述:对任意非负整数n,33n-26n-1可被676整除.
| 1 |
| n |
| C | 1 n |
| 1 |
| n |
| C | 2 n |
| 1 |
| n |
| C | n n |
| 1 |
| n |
当且仅当n=1时取等号,
当n=1时,(1+
| 1 |
| n |
当n≥2时,(1+
| 1 |
| n |
| C | 0 n |
| C | 1 n |
| 1 |
| n |
| C | 2 n |
| 1 |
| n |
| C | n n |
| 1 |
| n |
| C | 2 n |
| 1 |
| n |
| C | n n |
| 1 |
| n |
| n(n-1) |
| 2! |
| 1 |
| n |
| n(n-1)(n-2) |
| 3! |
| 1 |
| n |
| n(n-1)(n-2)…2•1 |
| n! |
| 1 |
| n |
| 1 |
| 2! |
| 1 |
| 3! |
| 1 |
| n! |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| n×(n+1) |
| 1 |
| n+1 |
综上所述:2≤(1+
| 1 |
| n |
(2)当n=0时,33n-26n-1=0,可被676整除.
当n=1时,33n-26n-1=0,可被676整除.
当n≥2时,33n-26n-1=27n-26n-1=(1+26)n-26n-1=
| C | 0 n |
| C | 1 n |
| C | 2 n |
| C | n n |
| C | 2 n |
| C | n n |
综上所述:对任意非负整数n,33n-26n-1可被676整除.
点评:本题考查了二项式定理展开式的应用,熟练掌握二项式定理展开公式,是解答的关键.
练习册系列答案
相关题目
下列函数中,既是偶函数又在区间(0,1)上单调递减的函数为( )
A、y=
| ||
| B、y=lnx | ||
| C、y=cosx | ||
| D、y=x2 |
满足{3,4}⊆M⊆{0,1,2,3,4}的所有集合M的个数是( )
| A、6 | B、7 | C、8 | D、9 |