题目内容
8.已知向量$\overrightarrow{BA}=(1,-3)$,向量$\overrightarrow{BC}=(4,-2)$,则△ABC的形状为( )| A. | 等腰直角三角形 | B. | 等边三角形 | ||
| C. | 直角非等腰三角形 | D. | 等腰非直角三角形 |
分析 由已知向量的坐标求得$\overrightarrow{AC}$的坐标,可得$|\overrightarrow{BA}|=|\overrightarrow{AC}|$,结合$\overrightarrow{BA}•\overrightarrow{AC}=0$得答案.
解答 解:∵$\overrightarrow{BA}=(1,-3)$,$\overrightarrow{BC}=(4,-2)$,
∴$\overrightarrow{AC}=\overrightarrow{BC}-\overrightarrow{BA}$=(3,1),
∴$|\overrightarrow{BA}|=|\overrightarrow{AC}|=\sqrt{10}$.
又$\overrightarrow{BA}•\overrightarrow{AC}=1×3-3×1=0$.
∴△ABC的形状为等腰直角三角形.
故选A.
点评 本题考查平面向量的数量积运算,考查向量垂直与数量积的关系,属中档题.
练习册系列答案
相关题目
19.在高三一次数学测验后,某班对选做题的选题情况进行了统计,如表.
(Ⅰ)求全班选做题的均分;
(Ⅱ)据此判断是否有90%的把握认为选做《坐标系与参数方程》或《不等式选讲》与性别有关?
(Ⅲ)已知学习委员甲(女)和数学科代表乙(男)都选做《不等式选讲》.若在《不等式选讲》中按性别分层抽样抽取3人,记甲乙两人被选中的人数为,求的数学期望.
参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,n=a+b+c+d.
下面临界值表仅供参考:
| 坐标系与参数方程 | 不等式选讲 | |||
| 人数及均分 | 人数 | 均分 | 人数 | 均分 |
| 男同学 | 14 | 8 | 6 | 7 |
| 女同学 | 8 | 6.5 | 12 | 5.5 |
(Ⅱ)据此判断是否有90%的把握认为选做《坐标系与参数方程》或《不等式选讲》与性别有关?
(Ⅲ)已知学习委员甲(女)和数学科代表乙(男)都选做《不等式选讲》.若在《不等式选讲》中按性别分层抽样抽取3人,记甲乙两人被选中的人数为,求的数学期望.
参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,n=a+b+c+d.
下面临界值表仅供参考:
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
16.以下四个命题中,真命题是( )
| A. | ?x∈(0,π),sinx=tanx | |
| B. | “?x∈R,x2+x+1>0”的否定是“?x0∈R,x02+x0+1<0” | |
| C. | ?θ∈R,函数f(x)=sin(2x+θ)都不是偶函数 | |
| D. | 条件p:$\left\{\begin{array}{l}{x+y>4}\\{xy>4}\end{array}\right.$,条件q:$\left\{\begin{array}{l}{x>2}\\{y>2}\end{array}\right.$则p是q的必要不充分条件 |
20.“x<2”是“2x<1”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |