ÌâÄ¿ÄÚÈÝ
13£®¼ºÖªº¯Êýf£¨x£©=sinx+$\sqrt{3}$cosx£¨x¡ÊR£©£¬ÏȽ«y=f£¨x£©µÄͼÏóÉÏËùÓеãµÄºá×ø±êËõ¶Ìµ½ÔÀ´µÄ$\frac{1}{2}$±¶£¨×Ý×ø±ê²»±ä£©£¬ÔÙ½«µÃµ½µÄͼÏóÉÏËùÓеãÏòÓÒÆ½ÐÐÒÆ¶¯¦È£¨¦È£¾0£©¸öµ¥Î»³¤¶È£¬µÃµ½µÄͼÏó¹ØÓÚÖ±Ïßx=$\frac{3¦Ð}{4}$¶Ô³Æ£¬Ôò¦ÈµÄ×îСֵΪ£¨¡¡¡¡£©| A£® | $\frac{¦Ð}{6}$ | B£® | $\frac{¦Ð}{3}$ | C£® | $\frac{5¦Ð}{12}$ | D£® | $\frac{2¦Ð}{3}$ |
·ÖÎö ÓÉÌõ¼þÀûÓÃy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬ÕýÏÒº¯ÊýµÄͼÏóµÄ¶Ô³ÆÐÔ£¬µÃ³ö½áÂÛ£®
½â´ð ½â£ºº¯Êýf£¨x£©=sinx+$\sqrt{3}$cosx£¨x¡ÊR£©=2sin£¨x+$\frac{¦Ð}{3}$£©£¬
ÏȽ«y=f£¨x£©µÄͼÏóÉÏËùÓеãµÄºá×ø±êËõ¶Ìµ½ÔÀ´µÄ$\frac{1}{2}$±¶£¨×Ý×ø±ê²»±ä£©£¬
¿ÉµÃy=2sin£¨2x+$\frac{¦Ð}{3}$£©µÄͼÏó£»
ÔÙ½«µÃµ½µÄͼÏóÉÏËùÓеãÏòÓÒÆ½ÐÐÒÆ¶¯¦È£¨¦È£¾0£©¸öµ¥Î»³¤¶È£¬
µÃµ½y=2sin[2£¨x-¦È£©+$\frac{¦Ð}{3}$]=2sin£¨2x+$\frac{¦Ð}{3}$-2¦È£©µÄͼÏó£®
ÔÙ¸ù¾ÝµÃµ½µÄͼÏó¹ØÓÚÖ±Ïßx=$\frac{3¦Ð}{4}$¶Ô³Æ£¬¿ÉµÃ2•$\frac{3¦Ð}{4}$+$\frac{¦Ð}{3}$-2¦È=k¦Ð+$\frac{¦Ð}{2}$£¬k¡Êz£¬
Ôò¦ÈµÄ×îСֵΪ$\frac{¦Ð}{6}$£¬
¹ÊÑ¡£ºA£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¹æÂÉ£¬ÕýÏÒº¯ÊýµÄͼÏóµÄ¶Ô³ÆÐÔ£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
8£®ÒÑÖªiΪÐéÊýµ¥Î»£¬Èô¸´ÊýzÂú×㣨3-4i£©z=1+2i£¬ÔòzµÄ¹²éÊýÊÇ£¨¡¡¡¡£©
| A£® | $-\frac{1}{5}+\frac{2}{5}i$ | B£® | $\frac{1}{5}+\frac{2}{5}i$ | C£® | $-\frac{1}{5}-\frac{2}{5}i$ | D£® | $\frac{1}{5}-\frac{2}{5}i$ |