题目内容
18.设函数f(2x)的定义域为(1,2),求f($\sqrt{{x}^{2}-1}$)的定义域(-$\sqrt{17}$,-$\sqrt{5}$)∪($\sqrt{5}$,$\sqrt{17}$).分析 根据函数f(2x)的定义域求出f(x)的定义域,
再由此求出f($\sqrt{{x}^{2}-1}$)的定义域.
解答 解:函数f(2x)的定义域为(1,2),
∴x∈(1,2),∴2x∈(2,4),
∴f(x)的定义域是(2,4);
令2<$\sqrt{{x}^{2}-1}$<4,
得4<x2-1<16,
即5<x2<17,
解得-$\sqrt{17}$<x<-$\sqrt{5}$或$\sqrt{5}$<x<$\sqrt{17}$,
∴f($\sqrt{{x}^{2}-1}$)的定义域为(-$\sqrt{17}$,-$\sqrt{5}$)∪($\sqrt{5}$,$\sqrt{17}$).
故答案为:$({-\sqrt{17},-\sqrt{5}})∪({\sqrt{5},\sqrt{17}})$.
点评 本题考查了函数的定义域及其求法,是基础题.
①给出f(x)的定义域为[a,b],f[g(x)]的定义域,就是不等式a≤g(x)≤b得x得取值集合,
②给出f[g(x)]的定义域为[a,b],求解f(x)的定义域,就是在x∈[a,b]内的g(x)的值域.
练习册系列答案
相关题目
8.
如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )
| A. | 9($\sqrt{2}$+1)π+8$\sqrt{3}$ | B. | 9($\sqrt{3}$+2)π+4$\sqrt{3}$-8 | C. | 9($\sqrt{3}$+2)π+4$\sqrt{3}$ | D. | 9($\sqrt{2}$+1)π+8$\sqrt{3}$-8 |
9.命题“若a≥-1,则x+a≥1nx”的否定是( )
| A. | 若a<-1,则x+a<1nx | B. | 若a≥-1,则x+a<1nx | ||
| C. | 若a<-1,则x+a≥1nx | D. | 若a≥-1,则x+a≤1nx |
6.函数f(x)在定义域R内可导,f(x)=f(2-x),当x∈(1,+∞)时,(x-1)f′(x)<0,设a=f(log32),b=f(log52),c=f(log25),则( )
| A. | c<a<b | B. | c<b<a | C. | a<b<c | D. | b<a<c |