题目内容

{an}前n项和为Sn,a1=1,an=
Sn
n
+n-1.
(1)求证{an}为等差数列,并求其通项公式;
(2)若存在二次函数f(x)=ax2(a≠0)使数列{
f(n)
anan+1
}的前n项和Tn=
2n2+2n
2n+1
,求f(x).
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由an=
Sn
n
+n-1,可得Sn=nan-(n2-n),当n≥2时,Sn-1=(n-1)an-1-[(n-1)2-(n-1)],利用an=Sn-Sn-1,化为an-an-1=2,即可证明.
(2)
f(n)
anan+1
=
an2
(2n-1)(2n+1)
,当n=1时,
f(1)
a1a2
=
a
3
=
2+2
3
,解得a=4.可得f(x)=4x2.验证即可.
解答: (1)证明:∵an=
Sn
n
+n-1,∴Sn=nan-(n2-n)
当n≥2时,Sn-1=(n-1)an-1-[(n-1)2-(n-1)],
∴an=Sn-Sn-1=nan-(n2-n)-(n-1)an-1+[(n-1)2-(n-1)],化为an-an-1=2,
因此{an}为等差数列,
其通项公式an=1+2(n-1)=2n-1;
(2)解:
f(n)
anan+1
=
an2
(2n-1)(2n+1)

当n=1时,
f(1)
a1a2
=
a
3
=
2+2
3
,解得a=4.
∴f(x)=4x2
f(n)
anan+1
=
4n2
(2n-1)(2n+1)
=
4n2-1+1
(2n-1)(2n+1)
=1+
1
2
(
1
2n-1
-
1
2n+1
)

∴数列{
f(n)
anan+1
}的前n项和Tn=n+
1
2
[(1-
1
3
)+(
1
3
-
1
5
)
+…+(
1
2n-1
-
1
2n+1
)]

=n+
1
2
(1-
1
2n+1
)

=n+
n
2n+1

=
2n2+2n
2n+1

满足已知条件,
∴f(x)=4x2
点评:本题考查了递推式的应用、“裂项求和”、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网