题目内容

5.已知点F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点,点A是双曲线右支上一点,∠AF2F1=$\frac{2π}{3}$,且($\overrightarrow{{F}_{2}{F}_{1}}$+$\overrightarrow{{F}_{2}A}$)•$\overrightarrow{{F}_{1}A}$=0,则此双曲线的离心率为(  )
A.$\frac{1+\sqrt{5}}{2}$B.$\frac{1+\sqrt{3}}{2}$C.$\frac{3}{2}$D.$\frac{1+\sqrt{2}}{2}$

分析 设F1(-c,0),F2(c,0),运用向量的数量积的性质可得|$\overrightarrow{{F}_{2}A}$|=|$\overrightarrow{{F}_{2}{F}_{1}}$|=2c,在△AF1F2中,运用余弦定理可得|AF1|=2$\sqrt{3}$c,再由双曲线的定义和离心率公式计算即可得到所求值.

解答 解:设F1(-c,0),F2(c,0),
由($\overrightarrow{{F}_{2}{F}_{1}}$+$\overrightarrow{{F}_{2}A}$)•$\overrightarrow{{F}_{1}A}$=0,可得
($\overrightarrow{{F}_{2}{F}_{1}}$+$\overrightarrow{{F}_{2}A}$)•($\overrightarrow{{F}_{2}A}$-$\overrightarrow{{F}_{2}{F}_{1}}$)=0,
即有$\overrightarrow{{F}_{2}A}$2-$\overrightarrow{{F}_{2}{F}_{1}}$2=0,
即|$\overrightarrow{{F}_{2}A}$|=|$\overrightarrow{{F}_{2}{F}_{1}}$|=2c,
在△AF1F2中,∠AF2F1=$\frac{2π}{3}$,
可得|AF1|=$\sqrt{4{c}^{2}+4{c}^{2}-2•2c•2c•(-\frac{1}{2})}$=2$\sqrt{3}$c,
由双曲线的定义可得|AF1|-|AF2|=2a,
即2$\sqrt{3}$c-2c=2a,
则e=$\frac{c}{a}$=$\frac{1}{\sqrt{3}-1}$=$\frac{1+\sqrt{3}}{2}$.
故选:B.

点评 本题考查双曲线的离心率的求法,注意运用向量的数量积的性质和双曲线的定义,结合三角形的余弦定理,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网