题目内容

13.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的体积为(  )
A.$\frac{243π}{16}$B.$\frac{81π}{16}$C.$\frac{81π}{4}$D.$\frac{27π}{4}$

分析 正四棱锥P-ABCD的五个顶点在同一球面上,则其外接球的球心在它的高PO1上,记为O,求出AO1,OO1,解出球的半径,求出球的体积.

解答 解:正四棱锥P-ABCD的外接球的球心在它的高PO1上,
记为O,PO=AO=R,PO1=4,OO1=4-R,
在Rt△AO1O中,AO1=$\sqrt{2}$,由勾股定理R2=2+(4-R)2得R=$\frac{9}{4}$,
∴球的体积为$\frac{243}{16}π$.
故选A.

点评 本题考查球的表面积,球的内接体问题,解答关键是确定出球心的位置,利用直角三角形列方程式求解球的半径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网