题目内容

1.在直角三角形ABC中,直角顶点为C,其中∠B=60°,在角ACB内部任作一条射线CM,与线段AB交于点M,满足AM<AC的概率为$\frac{5}{6}$,则满足BC<AM<AC的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 由于过直角顶点C在∠ACB内部任作一射线CM,故可以认为所有可能结果的区域为∠ACB,可将事件A构成的区域为∠ACC',以角度为“测度”来计算

解答 解:在AB上取AC'=AC,则∠ACC′=75°.
记A={在∠ACB内部任作一射线CM,与线段AB交于点M,AM<AC},
则所有可能结果的区域为∠ACB,
事件A构成的区域为∠ACC'.
又∠ACB=90°,∠ACC'=75°.
又满足BC<AM的事件为B,则事件B是∠ACC'=60°的区域,所以满足BC<AM<AC的角度区域为事件A,B的同时发生,即∠MCC'=45°,
由几何概型公式得到BC<AM<AC的概率为:$\frac{45°}{90°}=\frac{1}{2}$;
故选:C.

点评 本题考查几何概型.在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网