题目内容

17.$f(x)={log_{\frac{1}{2}}}(3-2x-{x^2})$的增区间为(-1,1).

分析 由对数型复合函数的真数大于0求出函数的定义域,进一步求出内函数的减区间得答案.

解答 解:由3-2x-x2>0,得x2+2x-3<0,解得-3<x<1.
当x∈(-1,1)时,内函数t=-x2-2x+3为减函数,而外函数y=$lo{g}_{\frac{1}{2}}t$为减函数,
由复合函数的单调性可得,$f(x)={log_{\frac{1}{2}}}(3-2x-{x^2})$的增区间为(-1,1).
故答案为:(-1,1).

点评 本题主要考查了复合函数的单调性以及单调区间的求法.对应复合函数的单调性,一要注意先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网