题目内容
在△ABC中,D、E、F分别是AB、BC、CA边上的中点,BF与CD交于点O,设
=
,
=
证明:A、O、E三点在同一直线上,且
=
=
=2.
| AB |
| a |
| AC |
| b |
证明:A、O、E三点在同一直线上,且
| OA |
| OE |
| BO |
| OF |
| CO |
| OD |
考点:平行向量与共线向量
专题:平面向量及应用
分析:由BF与CD交于点O,把
分两种情况用基底<
,
>线性表示,即
=(1-λ)
+
=
+(1-μ)
,再利用向量相等的条件列式求得λ,μ的值,代入
=
+(1-μ)
进一步可得
=
,从而得到A、O、E三点在同一直线上,并得到
=
=
=2.
| AO |
| a |
| b |
| AO |
| a |
| λ |
| 2 |
| b |
| μ |
| 2 |
| a |
| b |
| AO |
| μ |
| 2 |
| a |
| b |
| AO |
| 2 |
| 3 |
| AE |
| OA |
| OE |
| BO |
| OF |
| CO |
| OD |
解答:
证明:∵BF与CD交于点O,
∴
与
共线,故可设
=λ
,
根据三角形加法法则:
=
+
=
+λ
=
+λ(
-
)=
+λ(
-
)
=
+(1-λ)
=(1-λ)
+
,
与
共线,故可设
=μ
,
根据三角形加法法则:
=
+
=
+μ
=
+μ(
-
)=
+μ(
-
)
=
+(1-μ)
=
+(1-μ)
.
∴
=(1-λ)
+
=
+(1-μ)
.
则
,解得:
.
∴
=
,
=
,
即BO:OF=CO:OD=2.
∴
=
+(1-μ)
=
+
,
又∵
=
+
=
+
=
+
(
-
)
=
+
(
-
)=
+
,
从而
=
,
即
与
共线,
∴A、O、E三点在同一直线上.
且
=2,
∴
=
=
=2.
∴
| BO |
| BF |
| BO |
| BF |
根据三角形加法法则:
| AO |
| AB |
| BO |
=
| AB |
| BF |
| AB |
| AF |
| AB |
| AB |
| 1 |
| 2 |
| AC |
| AB |
=
| λ |
| 2 |
| AC |
| AB |
| a |
| λ |
| 2 |
| b |
| CO |
| CD |
| CO |
| CD |
根据三角形加法法则:
| AO |
| AC |
| CO |
=
| AC |
| CD |
| AC |
| AD |
| AC |
| AC |
| 1 |
| 2 |
| AB |
| AC |
=
| μ |
| 2 |
| AB |
| AC |
| μ |
| 2 |
| a |
| b |
∴
| AO |
| a |
| λ |
| 2 |
| b |
| μ |
| 2 |
| a |
| b |
则
|
|
∴
| BO |
| 2 |
| 3 |
| BF |
| CO |
| 2 |
| 3 |
| CD |
即BO:OF=CO:OD=2.
∴
| AO |
| μ |
| 2 |
| a |
| b |
| 1 |
| 3 |
| a |
| 1 |
| 3 |
| b |
又∵
| AE |
| AB |
| BE |
| a |
| 1 |
| 2 |
| BC |
| a |
| 1 |
| 2 |
| AC |
| AB |
=
| a |
| 1 |
| 2 |
| b |
| a |
| 1 |
| 2 |
| a |
| 1 |
| 2 |
| b |
从而
| AO |
| 2 |
| 3 |
| AE |
即
| AO |
| AE |
∴A、O、E三点在同一直线上.
且
| OA |
| OE |
∴
| OA |
| OE |
| BO |
| OF |
| CO |
| OD |
点评:本题考查平行向量与共线向量,考查了共线向量基本定理,解答此题的关键在于把所用向量用基底表示,是中档题.
练习册系列答案
相关题目
若实数x,y满足不等式组
且z=x+3y的最大值为12,则实数k=( )
|
| A、-12 | ||
B、-
| ||
| C、-9 | ||
D、-
|
已知
=(2,2),
=(4,1),
=(x,0),则当
•
最小时x的值是( )
| OA |
| OB |
| OP |
| AP |
| BP |
| A、-3 | B、3 | C、-1 | D、1 |
若双曲线
-
=1(a>0)的一个焦点与抛物线y2=20x的焦点重合,则双曲线的离心率是( )
| x2 |
| a2 |
| y2 |
| 9 |
A、
| ||
B、
| ||
C、
| ||
D、
|