题目内容

20.已知实数x,y满足不等式组$\left\{{\begin{array}{l}{x-y+2≥0}\\{2x+y-3≤0}\\{0≤y≤a}\end{array}}\right.$,若 z=-x+2y的最大值为3,则a的值为(  )
A.1B.$\frac{3}{2}$C.2D.$\frac{7}{3}$

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{{\begin{array}{l}{x-y+2≥0}\\{2x+y-3≤0}\\{0≤y≤a}\end{array}}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{y=a}\\{x-y+2=0}\end{array}\right.$,解得A(a-2,a),
当直线z=-x+2y即$y=\frac{1}{2}x+\frac{z}{2}$过点A(a-2,a)时,截距$\frac{z}{2}$最大,z取得最大值3,
即3=-a+2+2a,解得a=1.
故选:A.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网