题目内容
1.在(x+$\frac{1}{x}$)4(2x-1)6的展开式中,常数项为( )| A. | 6 | B. | 240 | C. | 480 | D. | 486 |
分析 把二项式按照二项式定理展开,分析求得展开式中的常数项
解答 解:(x+$\frac{1}{x}$)4(2x-1)6=(${C}_{4}^{0}$•x4+${C}_{4}^{1}$•x2+${C}_{4}^{2}$+${C}_{4}^{3}$•x-2+${C}_{4}^{4}$•x-4)
×(26•${C}_{6}^{0}$•x6-25•${C}_{6}^{1}$•x5+24•${C}_{6}^{2}$•x4-23•${C}_{6}^{3}$•x3+22•${C}_{6}^{4}$•x2-2•${C}_{6}^{5}$•x+${C}_{6}^{6}$),
所以其展开式中的常数项为
${C}_{4}^{2}$•${C}_{6}^{6}$+${C}_{4}^{3}$•22•${C}_{6}^{4}$+${C}_{4}^{4}$•24•${C}_{6}^{2}$=6+4×4×15+16×15=486.
故选:D.
点评 本题主要考查了二项式定理的应用问题,解题时应利用展开式的通项公式求出特定项的系数,是基础题目.
练习册系列答案
相关题目
9.设三条不同的直线分别为m,n,l,两个不同的平面分别为α,β.则下列说法正确的是( )
| A. | 若m∥n,n?α,则m∥α | |
| B. | 若m,n为异面直线,且m?α,n?β,则α∥β | |
| C. | 若m⊥n,α⊥β,m⊥α,则n⊥β | |
| D. | 若m∥α,m∥β,α∩β=l,则m∥l |
13.函数y=sin$\frac{x}{2}$sin($\frac{π}{2}-\frac{x}{2}$)的最小正周期是( )
| A. | 4π | B. | 2π | C. | π | D. | $\frac{π}{2}$ |