ÌâÄ¿ÄÚÈÝ
16£®£¨ I£©Çó²é»ñµÄ×í¾Æ¼Ý³µµÄÈËÊý£»
£¨ II£©´ÓÎ¥·¨¼Ý³µµÄ60ÈËÖа´¾Æºó¼Ý³µºÍ×í¾Æ¼Ý³µÀûÓ÷ֲã³éÑù³éÈ¡8ÈË×öÑù±¾½øÐÐÑо¿£¬ÔÙ´Ó³éÈ¡µÄ8ÈËÖÐÈÎÈ¡3ÈË£¬Çó3ÈËÖк¬ÓÐ×í¾Æ¼Ý³µÈËÊýXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
·ÖÎö £¨I£©ÀûÓÃÆµÂÊ·Ö²¼ÁÐÖ±·½Í¼µÄÐÔÖʼ´¿ÉµÃ³ö£®
£¨II£©Ò×ÖªÀûÓ÷ֲã³éÑù³éÈ¡8ÈËÖк¬ÓÐ×í¾Æ¼Ý³µÕßΪ2ÈË£¬XµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£®ÀûÓÃP£¨X=k£©=$\frac{{∁}_{6}^{3-k}{∁}_{2}^{k}}{{∁}_{8}^{3}}$£¨k=0£¬1£¬2£©£¬¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨I£©£¨0.0032+0.0043+0.0050£©¡Á20=0.25£¬0.25¡Á60=15£¬
¹Ê×í¾Æ¼ÝÊ»µÄÈËÊýΪ15£¨ÈË£©£®
£¨ II£©Ò×ÖªÀûÓ÷ֲã³éÑù³éÈ¡8ÈËÖк¬ÓÐ×í¾Æ¼Ý³µÕßΪ2ÈË£»
¡àXµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£®
ÀûÓÃP£¨X=k£©=$\frac{{∁}_{6}^{3-k}{∁}_{2}^{k}}{{∁}_{8}^{3}}$£¨k=0£¬1£¬2£©£¬¿ÉµÃ£ºP£¨X=0£©=$\frac{5}{14}$£¬P£¨X=1£©=$\frac{15}{28}$£¬P£¨X=2£©=$\frac{3}{28}$£®
XµÄ·Ö²¼ÁÐΪ
| X | 0 | 1 | 2 |
| P | $\frac{5}{14}$ | $\frac{15}{28}$ | $\frac{3}{28}$ |
µãÆÀ ±¾Ì⿼²éÁËÆµÂÊ·Ö²¼ÁÐÖ±·½Í¼µÄÐÔÖÊ¡¢·Ö²ã³éÑù¡¢³¬¼¸ºÎ·Ö²¼Áм°ÆäÊýѧÆÚÍû£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
7£®iÊÇÐéÊýµ¥Î»£¬Èô¸´ÊýzÂú×ãzi=-1+i£¬Ôò¸´ÊýzµÄ¹²éÊýÊÇ£¨¡¡¡¡£©
| A£® | 1-i | B£® | 1+i | C£® | -1+i | D£® | -1-i |
11£®Ô²x2+£¨y-1£©2=4Éϵ㵽ÇúÏßf£¨x£©=-x3+3x2Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏßµÄ×îÔ¶¾àÀëΪ£¨¡¡¡¡£©
| A£® | $\frac{\sqrt{10}}{4}$ | B£® | $\frac{10+\sqrt{10}}{5}$ | C£® | $\frac{10-\sqrt{10}}{5}$ | D£® | $\frac{10+2\sqrt{10}}{5}$ |