题目内容

已知函数f(x)=|x|,g(x)=-|x-4|+m
(Ⅰ)解关于x的不等式g[f(x)]+2-m>0;
(Ⅱ)若函数f(x)的图象恒在函数g(x)图象的上方,求实数m的取值范围.
考点:函数的图象,绝对值不等式的解法
专题:函数的性质及应用
分析:(Ⅰ)把函数f(x)=|x|代入g[f(x)]+2-m>0可得不等式||x|-4|<2,解此不等式可得解集;
(Ⅱ)函数f(x)的图象恒在函数g(x)图象的上方,则f(x)>g(x)恒成立,即m<|x-4|+|x|恒成立,只要求|x-4|+|x|的最小值即可.
解答: 解:(Ⅰ)把函数f(x)=|x|代入g[f(x)]+2-m>0并化简得||x|-4|<2,
∴-2<|x|-4<2,
∴2<|x|<6,
故不等式的解集为[-6,-2]∪[2,6];

(Ⅱ)∵函数f(x)的图象恒在函数g(x)图象的上方,
∴f(x)>g(x)恒成立,即m<|x-4|+|x|恒成立,
∵|x-4|+|x|≥|(x-4)-x|=4,
∴m的取值范围为m<4.
点评:本题只要考查函数的性质,同时考查不等式的解法,函数与不等式结合时,要注意转化数学思想的运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网