题目内容

9.在空间四边形ABCD中,H,G分别是AD,CD的中点,E,F分别边AB,BC上的点,且$\frac{CF}{FB}$=$\frac{AE}{EB}$=$\frac{1}{3}$.求证:
①点E,F,G,H四点共面;
②直线EH,BD,FG相交于一点.

分析 ①利用三角形的中位线平行于第三边和平行线分线段成比例定理,
得到EF、GH都平行于AC,由平行线的传递性得到EF∥GH,
根据两平行线确定一平面得出证明;
(2)利用分别在两个平面内的点在这两个平面的交线上,即可证明.

解答 证明:①如图所示,

空间四边形ABCD中,H,G分别是AD,CD的中点,
∴HG∥AC;
又$\frac{CF}{FB}$=$\frac{AE}{EB}$=$\frac{1}{3}$,
∴EF∥AC,
∴EF∥HG,
E、F、G、H四点共面;
②设EH与FG交于点P,
∵EH?平面ABD
∴P在平面ABD内,
同理P在平面BCD内,
且平面ABD∩平面BCD=BD,
∴点P在直线BD上,
∴直线EH,BD,FG相交于一点.

点评 本题考查了三角形的中位线性质、平行线分线段成比例定理、直线的平行性的传递性、确定平面的条件以及三线共点的应用问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网