题目内容
已知x=2是函数f(x)=(x2+ax-2a-3)ex的一个极值点(e=2.718…).实数a的值为( )
| A、-3 | ||
B、-
| ||
C、
| ||
| D、-5 |
分析:由x=2是函数f(x)=(x2+ax-2a-3)ex的一个极值点可得到x=2是f′(x)=0的根,从而求出a
解答:解:由f(x)=(x2+ax-2a-3)ex可得
∴f′(x)=(2x+a)ex+(x2+ax-2a-3)ex=[x2+(2+a)x-a-3]ex
∵x=2是函数f(x)的一个极值点,
∴f′(2)=0
∴(a+5)e2=0,
解得a=-5.
故选D.
∴f′(x)=(2x+a)ex+(x2+ax-2a-3)ex=[x2+(2+a)x-a-3]ex
∵x=2是函数f(x)的一个极值点,
∴f′(2)=0
∴(a+5)e2=0,
解得a=-5.
故选D.
点评:本题考查了利用导数研究函数的极值,利用导数求闭区间上函数的最值,属于基础题.
练习册系列答案
相关题目