题目内容
已知数列{an}满足an+1=
an2-
an+1(n∈N*)且a1=3.
(1)求a2,a3,a4的值及数列{an}的通项an;
(2)设数列{bn}满足bn=
,Sn为数列{bn}的前n项和,求证:
≤Sn<
.
| 1 |
| 2 |
| n |
| 2 |
(1)求a2,a3,a4的值及数列{an}的通项an;
(2)设数列{bn}满足bn=
| 2an+1 |
| an(an+1)(an+2) |
| 7 |
| 60 |
| 13 |
| 24 |
考点:数列与不等式的综合
专题:等差数列与等比数列,不等式的解法及应用
分析:(1)直接由已知结合数列递推式求得a2,a3,a4的值,猜测数列{an}的通项an,然后利用数学归纳法证明;
(2)把数列{an}的通项an代入bn=
,整理后求出b1=
=
,再由bn>0说明不等式左边成立,然后利用放缩法结合裂项相消法证明不等式右边.
(2)把数列{an}的通项an代入bn=
| 2an+1 |
| an(an+1)(an+2) |
| 7 |
| 3×4×5 |
| 7 |
| 60 |
解答:
(1)解:由an+1=
an2-
an+1,a1=3,得
a2=
×32-
×3+1=4.
a3=
×42-4+1=5.
a4=
×52-
×5+1=6.
…
由此推测,an=n+2.
下面用数学归纳法证明:
当n=1时,a1=3成立;
假设当n=k时成立,即ak=k+2,
则当n=k+1时,ak+1=
ak2-
ak+1=
(k+2)2-
(k+2)+1
=
=k+3=(k+1)+2,结论成立.
综上,对于任意的n∈N*,都有an=n+2;
(2)证明:由bn=
,得
bn=
=
.
当n=1时,b1=
=
,
又bn>0,
∴数列{bn}的前n项和Sn≥S1=
;
又
=
-
-
[
-
].
∴Sn=b1+b2+…+bn=(
-
+
-
+
-
+…+
-
)
-
[
-
+
-
+…
-
]
=
+
-
-
-
+
=
-
<
.
综上,
≤Sn<
.
| 1 |
| 2 |
| n |
| 2 |
a2=
| 1 |
| 2 |
| 1 |
| 2 |
a3=
| 1 |
| 2 |
a4=
| 1 |
| 2 |
| 3 |
| 2 |
…
由此推测,an=n+2.
下面用数学归纳法证明:
当n=1时,a1=3成立;
假设当n=k时成立,即ak=k+2,
则当n=k+1时,ak+1=
| 1 |
| 2 |
| k |
| 2 |
| 1 |
| 2 |
| k |
| 2 |
=
| 2k+6 |
| 2 |
综上,对于任意的n∈N*,都有an=n+2;
(2)证明:由bn=
| 2an+1 |
| an(an+1)(an+2) |
bn=
| 2(n+2)+1 |
| (n+2)(n+3)(n+4) |
| 2n+5 |
| (n+2)(n+3)(n+4) |
当n=1时,b1=
| 7 |
| 3×4×5 |
| 7 |
| 60 |
又bn>0,
∴数列{bn}的前n项和Sn≥S1=
| 7 |
| 60 |
又
| 2n+5 |
| (n+2)(n+3)(n+4) |
| 1 |
| n+2 |
| 1 |
| n+4 |
| 1 |
| 2 |
| 1 |
| (n+2)(n+3) |
| 1 |
| (n+3)(n+4) |
∴Sn=b1+b2+…+bn=(
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| n+2 |
| 1 |
| n+4 |
-
| 1 |
| 2 |
| 1 |
| 3×4 |
| 1 |
| 4×5 |
| 1 |
| 4×5 |
| 1 |
| 5×6 |
| 1 |
| (n+2)(n+3) |
| 1 |
| (n+3)(n+4) |
=
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 24 |
| 1 |
| n+3 |
| 1 |
| n+4 |
| 1 |
| (n+3)(n+4) |
=
| 13 |
| 24 |
| 2 |
| n+4 |
| 13 |
| 24 |
综上,
| 7 |
| 60 |
| 13 |
| 24 |
点评:本题考查了数列递推式,考查了利用数学归纳法证明数列的通项公式,训练了放缩法证明是列不等式,考查了学生的灵活思维能力和计算能力,是压轴题.
练习册系列答案
相关题目