题目内容
已知集合M={x|x2-2x-3<0},N={x|x≥1},则M∩N=( )
| A、(3,+∞) |
| B、(1,3) |
| C、[1,3) |
| D、(-1,+∞) |
考点:交集及其运算
专题:集合
分析:求出M中不等式的解集确定出M,找出两集合的交集即可.
解答:
解:由M中的不等式变形得:(x-3)(x+1)<0,
解得:-1<x<3,即M=(-1,3),
∵N={x|x≥1}=[1,+∞),
∴M∩N=[1,3).
故选:C.
解得:-1<x<3,即M=(-1,3),
∵N={x|x≥1}=[1,+∞),
∴M∩N=[1,3).
故选:C.
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
函数y=sin(x+
)在闭区间( )上是增函数.
| π |
| 4 |
A、[-
| ||||
B、[-
| ||||
| C、[-π,0] | ||||
D、[-
|
函数y=log0.5(-x2+6x-5)在区间(m,m+1)上单调递减,则实数m的取值范围是( )
| A、[3,5] |
| B、[2,4] |
| C、[1,2] |
| D、[1,4] |
把函数y=sin(2x+
)的图象向右平移
个单位,再把所得图象上各点的横坐标伸长到原来的2倍,则所得图象对应的函数解析式是( )
| π |
| 3 |
| π |
| 6 |
| A、y=sinx | ||
| B、y=sin4x | ||
C、y=sin(4x-
| ||
D、y=sin(x-
|
A={x|x2≥2},B={x|2x≤
},则A∩B=( )
| 1 |
| 4 |
| A、[-2,+∞) |
| B、(-∞,-2] |
| C、[2,+∞) |
| D、(-∞,-2] |
已知集合A={2,0,1,4},集合B={x|0<x≤4,x∈R},集合C=A∩B.则集合C可表示为( )
| A、{2,0,1,4} |
| B、{1,2,3,4} |
| C、{1,2,4} |
| D、{x|0<x≤4,x∈R} |
若直线x-2y+a=0与圆(x-2)2+y2=1有公共点,则实数a的取值范围是( )
A、[-
| ||||
B、(-
| ||||
C、[-2-
| ||||
D、[2-
|