题目内容
2.已知函数f(x)=(2017x-$\frac{1}{201{7}^{x}}$)x2017,若f(log2a)+f(log0.5a)≤$\frac{2(201{7}^{2}-1)}{2017}$,则实数a的取值范围是( )| A. | (0,2] | B. | (0,$\frac{2}{3}$]∪[1,+∞) | C. | (0,$\frac{1}{2}$]∪[2,+∞) | D. | [$\frac{1}{2}$,2] |
分析 判断函数是偶函数,且函数在(0,+∞)上是增函数,不等式转化为-1≤log2a≤1,即可得出结论.
解答 解:由题意,f(-x)=f(x),函数是偶函数,且函数在(0,+∞)上是增函数,
∵f(log2a)+f(log0.5a)≤$\frac{2(201{7}^{2}-1)}{2017}$,
∴f(log2a)+f(log0.5a)≤2f(1),
∴f(log2a)≤f(1),
∴-1≤log2a≤1,
∴a∈[$\frac{1}{2}$,2].
故选:D.
点评 本题考查函数的奇偶性、单调性的运用,考查学生解不等式的能力,正确转化是关键.
练习册系列答案
相关题目
17.函数f(x)=asinωx+acosωx(a>0,ω>0)的图象如图所示,则实数a和ω的最小正值分别为( )
| A. | a=2,ω=2 | B. | a=2,ω=1 | C. | a=2,$ω=\frac{3}{2}$ | D. | a=2,$ω=\frac{1}{2}$ |
7.
正方体ABCD-A1B1C1D1的棱长为a,P,Q,R分别是棱A1A,A1B1,A1D1的中点,以△PQR为底面作直三棱柱(侧棱与底面垂直的三棱柱叫直三棱柱),若此三棱柱另一底面的三个顶点也都在该正方体的表面上,则这个三棱柱的高为( )
| A. | $\frac{{\sqrt{2}}}{2}$a | B. | $\sqrt{2}$a | C. | $\frac{{\sqrt{3}}}{3}$a | D. | $\frac{{\sqrt{3}}}{2}$a |
14.从5种主料职工选2种,8种辅料中选3种烹制菜肴,烹制方式有5种,那么最多可以烹制出不同的菜肴种数为( )
| A. | 18 | B. | 200 | C. | 2800 | D. | 33600 |
11.四个大学生分到两个单位,每个单位至少分一个的分配方案有( )
| A. | 10种 | B. | 14种 | C. | 20种 | D. | 24种 |
12.某公司准备将1000万元资金投入到市环保工程建设中,现有甲、乙两个建设项目选择,若投资甲项目一年后可获得的利润ξ1(万元)的概率分布列如表所示:
且ξ1的期望E(ξ1)=120;若投资乙项目一年后可获得的利润ξ2(万元)与该项目建设材料的成本有关,在生产的过程中,公司将根据成本情况决定是否在第二和第三季度进行产品的价格调整,两次调整相互独立且调整的概率分别为p(0<p<1)和1-p.若乙项目产品价格一年内调整次数X(次数)与ξ2的关系如表所示:
(Ⅰ)求m,n的值;
(Ⅱ)求ξ2的分布列;
(Ⅲ)若该公司投资乙项目一年后能获得较多的利润,求p的取值范围.
| ξ1 | 110 | 120 | 170 |
| P | m | 0.4 | n |
| X | 0 | 1 | 2 |
| ξ2 | 41.2 | 117.6 | 204.0 |
(Ⅱ)求ξ2的分布列;
(Ⅲ)若该公司投资乙项目一年后能获得较多的利润,求p的取值范围.