题目内容
1.(1)计算:${({5\frac{1}{16}})^{0.5}}-2×{({2\frac{10}{27}})^{-\frac{2}{3}}}-2×{({\sqrt{2+π}})^0}÷{({\frac{3}{4}})^{-2}}$;(2)计算:log535+2log0.5$\sqrt{2}$-log5$\frac{1}{50}$-log514+5${\;}^{lo{g}_{5}3}$.
分析 (1)利用指数幂的运算性质即可得出.
(2)利用对数的运算性质即可得出.
解答 解:(1)原式=$(\frac{9}{4})^{2×0.5}$-2×$(\frac{4}{3})^{3×(-\frac{2}{3})}$-2×$1×(\frac{4}{3})^{2}$=$\frac{9}{4}$-2×$\frac{9}{16}$-2×$\frac{16}{9}$=-$\frac{175}{72}$.
(2)原式=$lo{g}_{5}\frac{35}{\frac{1}{50}×14}$-log22+3
=3-1+3=5.
点评 本题考查了指数幂与对数的运算法则,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
5.等比数列{an}中,an∈R+,a4•a5=32,则log2a1+log2a2+…+log2a8的值为( )
| A. | 10 | B. | 20 | C. | 36 | D. | 128 |
12.点M的直角坐标($\sqrt{3}$,-1)化成极坐标为( )
| A. | (2,$\frac{5π}{6}$) | B. | (2,$\frac{2π}{3}$) | C. | (2,$\frac{5π}{3}$) | D. | (2,$\frac{11π}{6}$) |
6.已知三棱锥 S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=2$\sqrt{3}$,AB=1,AC=2,∠BAC=60°,则球O的体积为( )
| A. | 4π | B. | $\frac{32}{3}π$ | C. | $\frac{16}{3}π$ | D. | 12π |
13.已知函数$f(x)=\left\{\begin{array}{l}{log_2}x,x>0\\{2^x},x≤0\end{array}\right.$,则$f[f(\frac{1}{4})]$=( )
| A. | 4 | B. | $\frac{1}{4}$ | C. | -4 | D. | $-\frac{1}{4}$ |