题目内容
9.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的右焦点为F,过F作双曲线C的一条渐近线的垂线,垂足为H,若FH的中点M在双曲线C上,则双曲线C的离心率为( )| A. | $\frac{\sqrt{6}}{2}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
分析 设一渐近线方程为y=$\frac{b}{a}$x,则F2H的方程为y-0=k(x-c),代入渐近线方程 求得H的坐标,有中点公式求得中点M的坐标,再把点M的坐标代入双曲线求得离心率.
解答 解:由题意可知,一渐近线方程为y=$\frac{b}{a}$x,则F2H的方程为 y-0=k(x-c),
代入渐近线方程 y=$\frac{b}{a}$x,可得H的坐标为($\frac{{a}^{2}}{c}$,$\frac{ab}{c}$),
故F2H的中点M($\frac{c+\frac{{a}^{2}}{c}}{2}$,$\frac{ab}{2c}$),
根据中点M在双曲线C上,
∴$\frac{(\frac{{a}^{2}}{c}+c)^{2}}{4{a}^{2}}-\frac{{a}^{2}{b}^{2}}{4{b}^{2}{c}^{2}}$=1,
∴$\frac{{c}^{2}}{{a}^{2}}$=2,故e=$\frac{c}{a}$=$\sqrt{2}$,
故选:D.
点评 本题考查双曲线的标准方程,以及双曲线的简单性质的应用,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关题目
1.已知集合A={x|$\frac{1}{x}$<1},B={y|y=2-x-1,x∈R},则A∩B=( )
| A. | ∅ | B. | {x|x>1} | C. | {x|-1<x<0} | D. | {x|-1<x<0或x>1} |
1.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x},}&{x≤0}\\{lo{g}_{2}}&{x,x>0}\end{array}\right.$,若对任意给定的t∈(1,+∞),都存在唯一的x∈R,满足f(f(x))=2at2+at,则正实数a的最小值是( )
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
17.某城市对机动车单双号限行进行了调查,在参加调查的2548名有车人中有1560名持反对意见,2452名无车人中有1200名持反对意见,在运用这些数据说明“拥有车辆”与“反对机动车单双号限行”是否有关系时,用什么方法最有说服力( )
| A. | 平均数与方差 | B. | 回归直线方程 | C. | 独立性检验 | D. | 概率 |
4.已知数列{an}中,a1=1,an+1=$\frac{{a}_{n}}{1+{a}_{n}}$(N=1,2,3,…)则数列{an}的通项公式为an=( )
| A. | $\frac{1}{{2}^{n-1}}$ | B. | $\frac{1}{n}$ | C. | $\frac{n}{n+1}$ | D. | $\frac{1}{2n-1}$ |
1.已知某班学生语文与数学的学业水平测试成绩抽样统计如下表,若抽取学生n人,成绩分为A(优秀)、B(良好)、C(及格)三个等级,设x,y分别表示语文成绩与数学成绩,例如:表中语文成绩为B等级的共有20+18+4=42人,已知x与y均为B等级的概率是0.18.
(Ⅰ)求抽取的学生人数;
(Ⅱ)设该样本中,语文成绩优秀率是30%,求a,b的值;
(Ⅲ)已知a≥10,b≥8,求语文成绩为A等级的总人数比语文成绩为C等级的总人数少的概率.
| x语文 人数 y数学 | A | B | C |
| A | 7 | 20 | 5 |
| B | 9 | 18 | 6 |
| C | a | 4 | b |
(Ⅱ)设该样本中,语文成绩优秀率是30%,求a,b的值;
(Ⅲ)已知a≥10,b≥8,求语文成绩为A等级的总人数比语文成绩为C等级的总人数少的概率.