题目内容

16.如图,四边形ABCD为矩形,AD⊥平面ABE,F为CE上的点,且BF⊥平面ACE
(Ⅰ)求证:AE⊥BE
(Ⅱ)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

分析 (Ⅰ)推导出BC⊥平面ABE,从而AE⊥BC,由BF⊥平面ACE,得AE⊥BF,从而AE⊥平面BCE,由此能证明AE⊥BE.
(Ⅱ)在三角形ABE中过M点作MG∥AE交BE于G点,在三角形BEC中过G点作GN∥BC交EC于N点,连MN,由比例关系得CN=$\frac{1}{3}$CE,推导出平面MGN∥平面ADE,由此能求出N点为线段CE上靠近C点的一个三等分点.

解答 证明:(Ⅰ)∵AD⊥平面ABE,AD∥BC
∴BC⊥平面ABE,∵AE?平面ABE,∴AE⊥BC,
又∵BF⊥平面ACE,AE?平面ACE,∴AE⊥BF,
∵BC∩BF=B,∴AE⊥平面BCE,
又BE?平面BCE,∴AE⊥BE.(6分)
解:(Ⅱ)在三角形ABE中过M点作MG∥AE交BE于G点,
在三角形BEC中过G点作GN∥BC交EC于N点,连MN,
则由比例关系得CN=$\frac{1}{3}$CE,
∵MG∥AE  MG?平面ADE,AE?平面ADE,∴MG∥平面ADE,
同理,GN∥平面ADE,∴平面MGN∥平面ADE,
又MN?平面MGN,∴MN∥平面ADE,
∴N点为线段CE上靠近C点的一个三等分点.(12分)

点评 本题考查线线垂直的证明,考查满足线面平行的点的位置的确定,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网