题目内容
14.已知集合A={α|2kπ≤α≤(2k+1)π,k∈Z},B={α|-6≤α≤6},则A∩B等于( )| A. | ∅ | B. | {α|-6≤α≤π} | ||
| C. | {α|0≤α≤π} | D. | {α|-6≤α≤-π,或0≤α≤π} |
分析 令k=-1与k=0表示出A,找出A与B的交集即可.
解答 解:当k=-1时,A={α|-2π≤α≤-π};当k=0时,A={α|0≤α≤π},
∵B={α|-6≤α≤6},
∴A∩B={α|-6≤α≤-π,或0≤α≤π},
故选:D.
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
4.在△ABC中,G为△ABC的重心,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则$\overrightarrow{BG}$=( )
| A. | -$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$ | B. | $\frac{1}{3}$$\overrightarrow{a}$-$\frac{2}{3}$$\overrightarrow{b}$ | C. | -$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$ | D. | $\frac{2}{3}$$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow{b}$ |
5.已知抛物线y2=4x上的两点A,B满足|AB|=6,则弦AB中点到y轴的最小距离为( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
9.已知集合A={x|(x+1)(x-2)≤0},B={x|-2<x<2},则A∩B=( )
| A. | {x|-1≤x≤2} | B. | {x|-1≤x<2} | C. | {x|-1<x<2} | D. | {x|-2<x≤1} |
6.函数y=-cos2x+$\sqrt{3}$cosx+$\frac{5}{4}$,则( )
| A. | 最大值是$\frac{5}{4}$,最小值是1 | B. | 最大值是1,最小值是$\frac{1}{4}$-$\sqrt{3}$ | ||
| C. | 最大值是2,最小值是$\frac{1}{4}$-$\sqrt{3}$ | D. | 最大值是2,最小值是$\frac{5}{4}$ |
3.某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序对三名候选人进行了笔试和面试,成绩最高的将被推荐.各项成绩如下表所示:请你根据表中信息解答下列问题:
(1)若按笔试和面试的平均得分确定最后成绩,应当推荐谁?
(2)若笔试、面试两项得分按照6:4的比确定最后成绩,应当推荐谁?
| 测试项目 | 测试成绩/分 | ||
| 甲 | 乙 | 丙 | |
| 笔试 | 92 | 85 | 95 |
| 面试 | 85 | 95 | 80 |
(2)若笔试、面试两项得分按照6:4的比确定最后成绩,应当推荐谁?
4.若(2-x)2013=a0+a1x+a2x2+…+a2013x2013,则$\frac{{a}_{0}+{a}_{2}+{a}_{4}+…{+a}_{2012}}{{a}_{1}+{a}_{3}+{a}_{5}+…+{a}_{2013}}$=( )
| A. | $\frac{{3}^{2013}+1}{{3}^{2013}-1}$ | B. | -$\frac{{3}^{2013}+1}{{3}^{2013}-1}$ | ||
| C. | $\frac{{3}^{2012}+1}{{3}^{2012}-1}$ | D. | -$\frac{{3}^{2012}+1}{{3}^{2012}-1}$ |