题目内容

13.F1,F2是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的两个焦点,M是椭圆上一点,若MF1⊥MF2,则点M的横坐标为±$\frac{5\sqrt{7}}{4}$.

分析 求得椭圆的a,b,c,可得焦点的坐标,再设M(m,n),求得向量MF1的坐标,向量MF2的坐标,再由向量垂直的条件:数量积为0,结合M在椭圆上,满足椭圆方程,解方程可得m的值.

解答 解:椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的a=5,b=3,c=$\sqrt{{a}^{2}-{b}^{2}}$=4,
F1(-4,0),F2(4,0),
设M(m,n),即有$\overrightarrow{M{F}_{1}}$=(-4-m,-n),$\overrightarrow{M{F}_{2}}$=(4-m,-n),
若MF1⊥MF2,则$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=(-4-m)(4-m)+n2=0,
可得m2+n2=16,①
又M在椭圆上,可得$\frac{{m}^{2}}{25}$+$\frac{{n}^{2}}{9}$=1,②
由①②解得,m=±$\frac{5\sqrt{7}}{4}$.
故答案为:±$\frac{5\sqrt{7}}{4}$.

点评 本题考查椭圆的方程和性质,考查向量垂直的条件:数量积为0,考查解方程的运算求解能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网