题目内容
13.若平面向量$\overrightarrow{a}$=(m,1),$\overrightarrow{b}$=(2,1),且($\overrightarrow{a}$-2$\overrightarrow{b}$)∥$\overrightarrow{b}$,则m=( )| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 利用向量的共线的充要条件,列出方程求解即可.
解答 解:平面向量$\overrightarrow{a}$=(m,1),$\overrightarrow{b}$=(2,1),且($\overrightarrow{a}$-2$\overrightarrow{b}$)∥$\overrightarrow{b}$,
可得m-4=2(-1),
解得m=2.
故选:B.
点评 本题考查向量共线的充要条件的应用,考查方程的思想,是基础题.
练习册系列答案
相关题目
4.
一次数学考试后,某老师从自己带的两个班级中各抽取5人,记录他们的考试成绩,得到如图所示的茎叶图,已知甲班5名同学成绩的平均数为81,乙班5名同学的中位数为73,则x-y的值为( )
| A. | 2 | B. | -2 | C. | 3 | D. | -3 |
2.已知向量$\overrightarrow{m}$=(1,2),$\overrightarrow{n}$=(a,-1),若$\overrightarrow{m}$⊥$\overrightarrow{n}$,则实数a的值为( )
| A. | -2 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 2 |
3.在公差不为0的等差数列{an}中,a2+a4=ap+aq,记$\frac{1}{p}$+$\frac{9}{q}$的最小值为m,若数列{bn}满足b1=$\frac{2}{11}$m,2bn+1-bn•bn+1=1,则b1+$\frac{{b}_{2}}{{2}^{2}}$+$\frac{{b}_{3}}{{3}^{2}}$+…+$\frac{{b}_{100}}{10{0}^{2}}$=( )
| A. | $\frac{97}{100}$ | B. | $\frac{99}{100}$ | C. | $\frac{100}{101}$ | D. | $\frac{102}{101}$ |