题目内容
12.已知函数f(x)的定义域为R,对任意实数x,y满足f(x)=f(y)f(x-y),且f(1)=$\frac{8}{9}$.(1)当n∈N*时,求证:数列{f(n)}是等比数列;
(2)设an=(n+1)•f(n),求和:a1+a2+a3+…+an.
分析 (1)在已知函数等式中,取x=n+1,y=1,即可证得数列{f(n)}是等比数列;
(2)由(1)求出数列{f(n)}的通项公式,代入an=(n+1)•f(n),然后利用错位相减法求和.
解答 (1)证明:取x=n+1,y=1,则由f(x)=f(y)f(x-y),得
f(n+1)=f(1)•f(n)=$\frac{8}{9}f(n)$,
∴数列{f(n)}是以$\frac{8}{9}$为首项,以$\frac{8}{9}$为公比的等比数列;
(2)解:由(1)知,f(n)=$(\frac{8}{9})^{n}$,
an=(n+1)•f(n)=(n+1)$•(\frac{8}{9})^{n}$,
则Sn=a1+a2+a3+…+an=$2×(\frac{8}{9})^{1}+3×(\frac{8}{9})^{2}+…+(n+1)(\frac{8}{9})^{n}$,
$\frac{8}{9}{S}_{n}=2×(\frac{8}{9})^{2}+3×(\frac{8}{9})^{3}+…+n(\frac{8}{9})^{n}+(n+1)(\frac{8}{9})^{n+1}$,
两式作差得:$\frac{1}{9}{S}_{n}=\frac{16}{9}+[(\frac{8}{9})^{2}+(\frac{8}{9})^{3}+…+(\frac{8}{9})^{n}]-(n+1)(\frac{8}{9})^{n+1}$=$\frac{16}{9}+\frac{\frac{64}{81}[1-(\frac{8}{9})^{n-1}]}{1-\frac{8}{9}}-(n+1)(\frac{8}{9})^{n+1}$.
∴${S}_{n}=80-\frac{512-64n}{9}•(\frac{8}{9})^{n-1}$.
点评 本题考查抽象函数的概念及其应用,考查了等比关系的确定,训练了错位相减法求数列的和,是中档题.
| A. | $(-1,\sqrt{3})$ | B. | $(-\sqrt{3},1)$ | C. | $(1,-\sqrt{3})$ | D. | $(\sqrt{3},-1)$ |
| A. | 0 | B. | 2 | C. | 3 | D. | 4 |
| A. | $\frac{y^2}{4}$-$\frac{x^2}{5}$=1(y≤-2) | B. | $\frac{y^2}{4}$-$\frac{x^2}{5}$=1 | C. | $\frac{x^2}{4}$-$\frac{y^2}{5}$=1(x≤-2) | D. | $\frac{x^2}{4}$-$\frac{y^2}{5}$=1 |
| A. | 对任意的x∈R,都有2x≥x2成立 | |
| B. | 存在实数x0,使得log${\;}_{\frac{1}{2}}$x0>x0 | |
| C. | 存在常数C,当x>C时,都有2x≥x2成立 | |
| D. | 存在实数x0,使得log${\;}_{\frac{1}{2}}$x0>2${\;}^{{x}_{0}}$ |