题目内容
3.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=l(a>b>0),F1、F2为左右焦点,下顶点为B1,过F的直线l交椭圆于M、N两点,当直线l的倾斜角为$\frac{π}{6}$时,F1B⊥l.(I)求椭圆C的离心率;
(Ⅱ)若P为椭圆上一动点,直线PM、PN的斜率记为kPM、kPN,且不为零,当直线l垂直于x轴时,$|\frac{1}{{{k_{PM}}}}-\frac{1}{{{k_{PN}}}}|$是否存在最小值?若存在,试求出该最小值;若不存在,请说明理由.
分析 (Ⅰ)由已知得F1(-c,0),B1(0,-b),由题意知${k}_{{F}_{1}{B}_{1}}•{k}_{l}=-1$,从而b=$\sqrt{3}c$,由此能求出椭圆C的离心率.
(Ⅱ)设P(x0,y0),(x0≠±c),M(c,$\frac{{b}^{2}}{a}$),N(c,-$\frac{{b}^{2}}{a}$),则$\frac{1}{{k}_{PM}}-\frac{1}{{k}_{PN}}$=$\frac{-2a}{{x}_{0}+c}$,由此能求出$|\frac{1}{{{k_{PM}}}}-\frac{1}{{{k_{PN}}}}|$存在最小值$\frac{4}{3}$.
解答 解:(Ⅰ)∵椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=l(a>b>0),F1、F2为左右焦点,下顶点为B1,
∴F1(-c,0),B1(0,-b),
∵过F的直线l交椭圆于M、N两点,当直线l的倾斜角为$\frac{π}{6}$时,F1B⊥l,
∴由题知F1B1⊥l,∴${k}_{{F}_{1}{B}_{1}}•{k}_{l}=-1$,
∴$\frac{b}{-c}=-\sqrt{3}$,∴b=$\sqrt{3}c$,
∴e=$\frac{c}{a}$=$\frac{c}{\sqrt{{b}^{2}+{c}^{2}}}$=$\frac{c}{2c}$=$\frac{1}{2}$.
(Ⅱ)设P(x0,y0),(x0≠±c),M(c,$\frac{{b}^{2}}{a}$),N(c,-$\frac{{b}^{2}}{a}$),
则$\frac{1}{{k}_{PM}}-\frac{1}{{k}_{PN}}$=$\frac{{x}_{0}-c}{{y}_{0}-\frac{{b}^{2}}{a}}$-$\frac{{x}_{0}-c}{{y}_{0}+\frac{{b}^{2}}{a}}$=$\frac{({x}_{0}-c)•2a{b}^{2}}{{a}^{2}{{y}_{0}}^{2}-{b}^{2}}$,
又P∈C,∴$\frac{{{x}_{0}}^{2}}{{a}^{2}}+\frac{{{y}_{0}}^{2}}{{b}^{2}}$=1,得${a}^{2}{{y}_{0}}^{2}={a}^{2}{b}^{2}-{b}^{2}{{x}_{0}}^{2}$,
∴$\frac{1}{{k}_{PM}}-\frac{1}{{k}_{PN}}$=$\frac{({x}_{0}-c)•2a{b}^{2}}{{a}^{2}{{y}_{0}}^{2}-{b}^{4}}$=$\frac{({x}_{0}-c)•2a{b}^{2}}{{a}^{2}{b}^{2}-{b}^{2}{{x}_{0}}^{2}-{b}^{4}}$
=$\frac{({x}_{0}-c)•2a{b}^{2}}{{b}^{2}{c}^{2}-{b}^{2}{{x}_{0}}^{2}}$=$\frac{({x}_{0}-c)•2a}{{c}^{2}-{{x}_{0}}^{2}}$=$\frac{-2a}{{x}_{0}+c}$,
∴|$\frac{1}{{k}_{PM}}-\frac{1}{{k}_{PN}}$|=|$\frac{-2a}{{x}_{0}+c}$|=$\frac{2}{|\frac{{x}_{0}}{a}+\frac{1}{2}|}$,
又∵-a≤x0≤a,且x0≠±c,
∴-1≤$\frac{{x}_{0}}{a}≤1$,且$\frac{{x}_{0}}{a}≠±\frac{1}{2}$,
∴|$\frac{1}{{k}_{PM}}-\frac{1}{{k}_{PN}}$|=$\frac{2}{|\frac{{x}_{0}}{a}+\frac{1}{2}|}$≥$\frac{2}{1+\frac{1}{2}}$=$\frac{4}{3}$.
∴$|\frac{1}{{{k_{PM}}}}-\frac{1}{{{k_{PN}}}}|$存在最小值$\frac{4}{3}$.
点评 本题考查椭圆离心率的求法,考查两线段倒数之差的绝对值的求法,是中档题,解题时要认真审题,注意椭圆性质的合理运用.
| A. | (-4,1] | B. | (1,2) | C. | [1,2) | D. | (-4,1) |
| A. | {1,2} | B. | {-2,-1} | C. | {-2,-1,0} | D. | {1,2,0} |
| A. | 1 | B. | -5 | C. | 3 | D. | -1 |
| A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | 3 | D. | -3 |