题目内容

已知==,且0<α<π,0<β<π,求α,β的值.
【答案】分析:利用诱导公式化简已知的两等式,得到两个关系式,两关系式左右分别平方,相加后利用同角三角函数间的基本关系化简,再由sin2α+cos2α=1,求出sinα的值,进而确定出sinβ的值,由α与β的范围,即可求出各自的值.
解答:解:∵cos(-α)=sinα,cos(+β)=sinβ,sin(-α)=-cosα,sin(+β)=cosβ,
∴已知的两等式变形为:sinα=sinβ①,-cosα=-cosβ②,
2+②2得:sin2α+3cos2α=2(sin2β+cos2β)=2,
又sin2α+cos2α=1,0<α<π,0<β<π,
∴sin2α=cos2α=,即sinα=,sinβ=
∴α=,β=或α=,β=
点评:此题考查了同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握基本关系及诱导公式是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网