题目内容
正项数列{an}满足a1=1,
=
+an+
,则
+
+…
=( )
| a | 2 n+1 |
| a | 2 n |
| 1 |
| 4 |
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
分析:由已知可得an+1=an+
,结合等差数列的通项公式可求an,进而可求
,利用裂项相消法可求数列的和
| 1 |
| 2 |
| 1 |
| anan+1 |
解答:解:∵an+12=an2+an+
=(an+
)2且an>0
∴an+1=an+
∵a1=1
∴数列{an}是以1为首项,以
为公差的等差数列
∴an=1+
(n-1)=
∴
=
=4(
-
)
∴
+
+…+
=4(
-
+
-
+…+
-
)
=4(
-
)
故选A
| 1 |
| 4 |
| 1 |
| 2 |
∴an+1=an+
| 1 |
| 2 |
∵a1=1
∴数列{an}是以1为首项,以
| 1 |
| 2 |
∴an=1+
| 1 |
| 2 |
| 1+n |
| 2 |
∴
| 1 |
| anan+1 |
| 4 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
∴
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=4(
| 1 |
| 2 |
| 1 |
| n+2 |
故选A
点评:本题主要考查了由数列的递推公式求解数列的通项公式,及等差数列的通项公式的应用,数列求和方法中的裂项求和方法的应用,具有一定的综合性
练习册系列答案
相关题目