题目内容
已知正项数列{an}满足:an2-nan-(n+1)=0,数列{bn}的前n项和为Sn,且Sn=2bn-2.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列{
}的前n项和Tn.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列{
| 1 | an•log2bn |
分析:(Ⅰ)解方程an2-nan-(n+1)=0,得an,由Sn=2bn-2,得n≥2时,Sn-1=2bn-1-2,两式相减得bn的递推式,根据递推式可判断{bn}为等比数列,进而可求得bn;
(Ⅱ)由(Ⅰ)可得
,拆项后利用裂项相消法可求得Tn.
(Ⅱ)由(Ⅰ)可得
| 1 |
| anlog2bn |
解答:解:(Ⅰ)由an2-nan-(n+1)=0,得an=n+1,或an=-1(舍去),
∴an=n+1;
又Sn=2bn-2,∴n≥2时,Sn-1=2bn-1-2,
两式相减,得bn=Sn-Sn-1=2bn-2bn-1,
∴bn=2bn-1(n≥2),
∴{bn}为等比数列,公比q=2,
又∵S1=b1=2b1-2,∴b1=2,
∴bn=2×2n-1=2n.
(Ⅱ)由(Ⅰ)知,an=n+1,bn=2n,
∴
=
=
=
-
,
∴Tn=1-
+
-
+…+
-
=1-
=
.
∴an=n+1;
又Sn=2bn-2,∴n≥2时,Sn-1=2bn-1-2,
两式相减,得bn=Sn-Sn-1=2bn-2bn-1,
∴bn=2bn-1(n≥2),
∴{bn}为等比数列,公比q=2,
又∵S1=b1=2b1-2,∴b1=2,
∴bn=2×2n-1=2n.
(Ⅱ)由(Ⅰ)知,an=n+1,bn=2n,
∴
| 1 |
| an•log2bn |
| 1 |
| (n+1)log22n |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
| n |
| n+1 |
点评:本题考查由递推式求数列通项、等差数列等比数列的通项公式、数列求和等知识,裂相消法对数列求和是高考考查的重点内容,要熟练掌握.
练习册系列答案
相关题目