题目内容
12.在△ABC中,a,b,c分别是三个内角A,B,C的对边,设a=2,b=3,c=4.(Ⅰ)求cosC的值;
(Ⅱ)求△ABC的面积.
分析 (Ⅰ)由已知利用余弦定理即可计算得解.
(Ⅱ)由(Ⅰ)利用同角三角函数基本关系式可求sinC的值,进而利用三角形面积公式即可计算得解.
解答 解:(Ⅰ)∵a=2,b=3,c=4,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{4+9-16}{2×2×3}$=-$\frac{1}{4}$.
(Ⅱ)∵cosC=-$\frac{1}{4}$,可求sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{\sqrt{15}}{4}$,
∴△ABC的面积S=$\frac{1}{2}$absinC=$\frac{1}{2}×2×3×$$\frac{\sqrt{15}}{4}$=$\frac{3\sqrt{15}}{4}$.
点评 本题主要考查了余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.
练习册系列答案
相关题目
2.函数f(x)=log2$\frac{x}{2}$•log2$\frac{x}{4}$,x∈(2,8]的值域为( )
| A. | [0,2] | B. | [-$\frac{1}{4}$,2] | C. | (0,2] | D. | (-$\frac{1}{4}$,2] |
3.已知双曲线C的中心在坐标原点,F(-2,0)是C的一个焦点,一条渐进线方程为$\sqrt{3}$x-y=0.
(Ⅰ)求双曲线方程;
(Ⅱ)若直线l:y=kx+1与双曲线C有且只有一个公共点,求k的值.
(Ⅰ)求双曲线方程;
(Ⅱ)若直线l:y=kx+1与双曲线C有且只有一个公共点,求k的值.
17.如果偶函数在[a,b]具有最大值,那么该函数在[-b.-a]有( )
| A. | 最大值 | B. | 最小值 | C. | 没有最大值 | D. | 没有最小值 |
2.若$a={2^{\frac{π}{8}}}$,${(\frac{1}{2})^b}={log_{\frac{1}{π}}}b$,$c={log_2}sin\frac{π}{3}$,则( )
| A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | b>c>a |